ACTION PLAN (January, 2022 to December, 2022) ## NADIA KRISHI VIGYAN KENDRA Bidhan Chandra Krishi Viswavidyalaya Indian Council of Agricultural Research Gayeshpur, Nadia, West Bengal, PIN – 741 234 ⊠: <u>nadiakvk@gmail.com</u>, **□**: http://www.nadiakvk.org ## CONTENT | SL. NO. | ITEMS | | PAGE NO. | |---------|----------------------------------|---|----------| | 1 | Name of KVK | - | 3 | | 2 | Name of Host Organization | - | 3 | | 3 | Training Programme | - | 4-30 | | 3.a. | Farmer & Farm women | - | 4-13 | | 3.b. | Rural youth | - | 14-15 | | 3.c. | Extension functionaries | - | 16 | | 3.d. | Consolidated training (On/ Off) | - | 17-30 | | 3.e. | Farmer & Farm women | - | 17-16 | | 3.f. | Rural youth | - | 27-28 | | 3.g. | Extension functionaries | - | 29-30 | | 4. | FLD conducted | - | 31-52 | | 5.a. | Seed & Planting material | - | 53 | | 5.b. | Village seed production | - | 54 | | 6 | Extension activities | - | 54-56 | | 7 | Revolving fund | - | 56 | | 8 | Expected fund from other sources | - | 56 | | 9 | OFT conducted | - | 57-67 | | 10 | List of projects | - | 68 | | 11 | No. of success stories | - | 68 | | 12 | SAC meeting | - | 68 | | 13 | Soil & water testing | - | 68 | | 14 | Fund requirement | - | 68 | | 15 | Wide acceptability of technology | - | 69 | # ACTION PLAN – 2022 #### 1. Name of the KVK: | Address | Telep | ohone | E mail | |---|---------------------------------|-------|--| | Nadia Krishi Vigyan Kendra
P.O. Gayeshpur, Dist. Nadia, West
Bengal
PIN - 741 234. | 033-
25891271
/9434241001 | NA | nadiakvk@gmail.com
Website:
www.nadiakvk.org | #### 2. Name of host organization: | A ddwgg | Telep | hone | E | |--|------------------|--------------------------------------|--| | Address | Office | FAX | E mail | | Bidhan Chandra Krishi
Viswavidyalaya
P.O. Mohanpur, Dist. Nadia, West
Bengal
PIN – 741 252 | 033-
25876048 | 033-
25870523
033-
25820465 | deebckv@gmail.com
Website:
www.bckv.edu.in | ## 3. Training programme to be organized (January 2022- to December 2022) ## (a) Farmers and farmwomen | | | | | | | No. of Participants | | | | | | | | | |--|---|----|----------|----------------|------------------------------|---------------------|---|---|---|-----|----------|----|------|----| | Thematic | Title of | N | Duration | Venue
On/Of | Tentati
ve | S | C | S | Т | | the
r | , | Tota | l | | area | Training | 0. | Dura | f | Date Date | M | F | M | F | M | F | M | F | Т | | I. Crop Produc | | | | | T | ı | 1 | | | ı | ı | | 1 | | | Weed
Management | Integrated weed management for Rice | 2 | 1 | OFF | March | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Integrated weed management for sesame | 1 | 1 | OFF | April | 1 2 | 3 | 2 | 1 | 1 0 | 2 | 24 | 6 | 30 | | Resource
Conservation
Technologies
Cropping | | | | | | | | | | | | | | | | Systems | | | | | | | | | | | | | | | | Crop
Diversificatio
n | Cultivation
of
alternative
profitable
crops | 2 | 1 | ON/
OFF | Februar
y
Novemb
er | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | Integrated Farming Micro irrigation/irrig ation Seed | Different
components
of Integrated
farming
system and
their role | 1 | 1 | OFF | April | 1 2 | 3 | 2 | 1 | 1 0 | 2 | 24 | 6 | 30 | | production | Structure of
Integrated
farming
system &
their
management | 2 | 1 | OFF /
ON | August
Septem
ber | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | | | | | | | | | | | | | | | | Nursery
management | Seedbed
preparation
of Kharif
Rice | 1 | 1 | OFF | May | 1 2 | 3 | 2 | 1 | 1 0 | 2 | 24 | 6 | 30 | | | Seedbed
preparation
of Kharif
Rice | 2 | 1 | ON/
OFF | June
June | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | Integrated
Crop | Seedbed
preparation
of Boro rice | 2 | 1 | ON | Februar
y | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |--|---|-------------|----------|------------|-------------------------|-----|---|-----|-------|--------|-------|------|------|----| | TI4:- | T:41 C | N .T | ion | Venue | Tentati | S | C | S | Т | | he | r | Tota | l | | Thematic area | Title of
Training | N
0. | Duration | On/Of | ve | | | | |] | r | | | | | | | | Ď | f | Date | M | F | M | F | M | F | M | F | T | | Management | | | | | | | | | | | | | | | | Soil & water | | | | | | | | | | | | | | | | conservation | | | | | | | | | | | | | | | | Integrated nutrient Management | Integrated
nutrient
management
paddy | 1 | 1 | OFF | June | 1 2 | 3 | 2 | 1 | 1 0 | 2 | 24 | 6 | 30 | | Production of | 1 3 | | | | | | | | | | | | | | | organic inputs | | | | | | | | | | | | | | | | Others
(Production
technology) | Cultivation of fodder crops | 1 | 1 | OFF | January | 1 2 | 3 | 2 | 1 | 1
0 | 2 | 24 | 6 | 30 | | teemiorogy) | Retting of | 1 | 1 | OFF | Mov | 1 | 3 | 2 | 1 | 1 | 2 | 24 | 6 | 30 | | | Jute | 1 | 1 | | May | 2 | 3 | 2 | 1 | 0 | 2 | 24 | 0 | 30 | | Weed
Management | Production
technology
of Rice | 2 | 1 | ON/
OFF | July | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Intercultural operations of rice | 2 | 1 | OFF | August
Septem
ber | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Cultivation practice of mustard | 2 | 1 | OFF | October | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Harvesting and storage of rice | 1 | 1 | OFF | October | 1 2 | 3 | 2 | 1 | 1 0 | 2 | 24 | 6 | 30 | | | Cultivation practice of Potato | 2 | 1 | OFF | Novemb
er | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Intercultural operation of potato | 2 | 1 | OFF | Decemb
er | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Integrated weed management for Rice | 2 | 1 | OFF | March | 2 0 | 5 | 5 | 2 | 2 5 | 3 | 50 | 1 0 | 60 | | | Integrated weed management for sesame | 1 | 1 | OFF | April | 1 2 | 3 | 2 | 1 | 1 0 | 2 | 24 | 6 | 30 | | II. Horticulture | | | | | • | | | | | | | | | | | a) Vegetable C | | | | | | | | | | | | l | 1 | | | Vegetables: Production and management technology | Advanced Agro techniques for Cultivation of | 1 | 1 | ON | 18.08.2 | 0 3 | 0 | 0 2 | 0 | 3 0 | 0 3 | 35 | 0 3 | 40 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |---|---|----|----------|------------|------------------------------|---|--------------|----|-------|------|-------|------|------|----| | Thematic | Title of | N | ion | Venue | Tentati | S | \mathbf{C} | S | T | | he | ŗ | Γota | l | | area | Training | 0. | Duration | On/Of
f | ve
Date | M | F | M | F | M | F | M | F | Т | | | solanaceous
vegetables | | | | | | | | | | | | | | | Vegetables: Production and management technology | Advanced Agro techniques for Cultivation of summer cole crops | 1 | 1 | ON | 25.02.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Vegetable:
Nursery
Management | Seed bed
and Seedling
management
of
vegetables
crops | 1 | 1 | ON/O
FF | 08.07.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Vegetable production | Techniques
of organic
vegetable
production | 1 | 1 | ON | 18.02.2 | 3 | 0 | 1 | 0 | 1 3 | 0 2 | 17 | 0 3 | 20 | | Vegetables:
Production of
low volume
and high value
crops | Agro techniques for off season vegetables cultivation | 2 | 1 | ON/O
FF | 14.01.2
2
24.06.2
2 | 3 | 1 | 2 | 1 | 2 5 | 3 | 30 | 5 | 35 | | Vegetable:
Nutrition
Garden | Women
empowerme
nt through
nutrition
garden | 1 | 1 | ON | 18.03.2 | 0 | 6 | 0 | 1 | 0 | 2 3 | 0 | 3 0 | 30 | | Vegetables:
Off-season
vegetables | Planning and management of off season leafy vegetables for better economic return | 1 | 1 | OFF | 10.06.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Protective
cultivation
(Green
Houses, Shade
Net etc.) | Protected
cultivation
practices for
flowers and
vegetables | 1 | 1 | ON/O
FF | 13.12.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Post-Harvest value addition | Value
addition to
fruits and
vegetables | 1 | 1 | ON | 18.05.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | | | | | | | | | | | Part | ticip | ants | | | |--|---|----|----------|------------|--------------|-----|---|-----|---|------|----------|------|--------|----| | Thematic | Title of | N | ion | Venue | Tentati | S | C | S | T | Ot | the
r | ŗ | Гota | l | | area | Training | 0. | Duration | On/Of
f | ve
Date | M | F | M | F | M | F | M | F | Т | | B) Cultivation | 1 | | ı | | | 1 | | 1 | | | | | | | | Fruits:
Training and
Pruning | HDP and structural canopy management in fruits | 1 | 1 | ON/O
FF | 22.04.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Cultivation of
Fruit | Advanced agro- technique for fruit cultivation: mango, banana, Litchi and Guava | 1 | 1 | ON | 13.06.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Fruit
cultivation | Flower and fruit setting management of Mango | 1 | 1 | OFF | 16.03.2
2 | 0 5 | 0 | 0 2 | 0 | 2 0 | 0 2 | 27 | 0 3 | 30 | | Ornamental Plants: Nursery Management | Nursery management of ornamental crops. | 1 | 1 | ON | 13.07.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Floriculture | Advances in open field flower cultivation | 1 | 1 | ON |
09.09.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1
0 | 25 | | Plantation crops: Production and Management technology | Advances in production technology of Palms and betel vine. | 1 | 1 | ON | 03.08.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | IFS: Production and Management technology | Profit maximizatio n through multi-tier/ mixed/integr ated farming system | 1 | 1 | ON/O
FF | 11.10.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Medicinal &
Aromatic
Plants | Cultivation
of Medicinal
and
Aromatic
plants | 1 | 1 | ON | 16.11.2
2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | Spices: Production | Onion &
Garlic: the | 1 | 1 | OFF | 29.11.2 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 25 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |--|---|-------|----------|------------|--|-----|-----|----|-------|------|---------|---------|------|------| | Thematic | Title of | N | tion | Venue | Tentati | S | C | S | Т | | he
' | | Гota | 1 | | area | Training | 0. | Duration | On/Of
f | ve
Date | M | F | M | F | M | F | M | F | Т | | and
Management
technology | advances in production technology. | | | | | | | | | | | | | | | III. Soil Health | and Fertility N | /Iana | geme | ent | 07.04.0 | ı | 1 | 1 | | l | | 1 | l | | | Soil fertility
management | Tools for
soil health
management | 3 | 1 | OFF | 07.04.2
2
06.06.2
2
22.12.2
2 | 3 0 | 5 | 0 | 0 | 2 0 | 5 | 50 | 1 0 | 60 | | | Production
technology
of compost | 5 | 1 | OFF | 12.04.2
2
17.05.2
2
19.09.2
2
24.10.2
2
28.12.2
2 | 6 0 | 1 5 | 0 | 0 | 4 0 | 1 0 | 10
0 | 2 5 | 12 5 | | | Nutrient
management
for Jute | 1 | 1 | OFF | 19.05.2
2 | 1 0 | 1 | 1 | 1 | 1 2 | 0 | 23 | 2 | 25 | | | Nutrient
management
for Kharif
paddy | 2 | 1 | OFF | 15.06.2
2
20.06.2
2
08.07.2
2 | 3 7 | 2 | 5 | 2 | 2 6 | 3 | 68 | 7 | 75 | | | Nutrient
management
for rabi
crops | 2 | 1 | OFF | 28.10.2
2
23.11.2
2 | 1 1 | 2 | 2 | 0 | 9 | 1 | 22 | 3 | 25 | | Nutrient Use
Efficiency | Methods for improving nutrient use efficiency | 2 | 2 | ON | 01.06.2
2
12.12.2
2 | 2 0 | 1 | 0 | 0 | 1 8 | 1 | 38 | 2 | 40 | | Integrated
Nutrient
Management | Integrated
nutrient
management
for major
vegetable
crops | 2 | 1 | OFF | 12.04.2
2
13.09.2
2 | 2 2 | 2 | 2 | 0 | 2 2 | 2 | 46 | 4 | 50 | | Production
and use of
organic inputs | Production
technology
of different
organic
inputs | 2 | 1 | OFF | 11.05.2
2
02.01.2
2 | 2 0 | 2 | 2 | 1 | 2 2 | 3 | 44 | 6 | 50 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |----------------------------------|---|----|----------|------------|------------------------------|--------|---|----|-------|------|-------|------|-------------|----| | Thematic | Title of | N | ion | Venue | Tentati | S | C | S | Т | | he | r | Fota | l | | area | Training | 0. | Duration | On/Of
f | ve
Date | | | | | | r | | | | | | | | | • | Dute | M | F | M | F | M | F | M | F | T | | Micro nutrient | 7.00 | | | | 18.01.2 | | | | | _ | | | | | | deficiency in crops | Effect of Zn
on rice | 2 | 1 | OFF | 2
26.01.2
2 | 2
5 | 1 | 3 | 1 | 8 | 2 | 46 | 4 | 50 | | Soil & water testing | Methods of soil collection | 2 | 1 | ON | 18.11.2
2
03.02.2
2 | 2 0 | 2 | 2 | 1 | 2 2 | 3 | 44 | 6 | 50 | | IV. Agril. Engi | neering | | | | | | | | | | | | | | | Y DI A D | 4. | | | | | | | | | | | | | | | V. Plant Protect Integrated Pest | tion Integrated | | | | | | | | | | | | | | | Management | pest | | | | | | | | | | | | | | | | management
of sesame
and green | 1 | 1 | OFF | 15.04.2 | 1 2 | 1 | 2 | 1 | 9 | 0 | 23 | 2 | 25 | | | gram
Integrated | | | | | | | | | | | | | | | | pest
management
of | 1 | 1 | Off | 05.05.2 | 7 | 0 | 1 | 0 | 1 2 | 0 | 20 | 0 | 20 | | | floricultural
crops in poly
house | | | | | | | | | | | | | | | | Integrated pest management | 2 | 1 | OFF | 04.05.2 | 2 | 5 | 5 | 0 | 1 | 5 | 40 | 1 | 50 | | | of
cucurbitaceo
us crops | 2 | 1 | OFF | 21.06.2 | 0 | 3 | 3 | U | 5 | J | 40 | 0 | 30 | | | Integrated pest management of early winter season vegetables. | 2 | 1 | OFF | 04.08.2
2
26.08.2
2 | 2 6 | 1 | 7 | 2 | 1 2 | 2 | 45 | 5 | 50 | | | IPM on
kharif paddy | 2 | 1 | OFF | 19.07.2
2
30.08.2
2 | 2 2 | 1 | 5 | 2 | 1 6 | 4 | 43 | 7 | 50 | | | Integrated pest management of boro paddy | 2 | 1 | OFF | 08.12.2
2
09.01.2
3 | 2 4 | 1 | 5 | 2 | 1 4 | 4 | 43 | 7 | 50 | | | Integrated pest | 1 | 1 | OFF | 12.10.2
2 | 1 3 | 1 | 1 | 1 | 9 | 0 | 23 | 2 | 25 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |--|--|----|----------|------------|------------------------------|-----|--------------|----|-------|------|---------|------|------|----| | Thematic | Title of | N | ion | Venue | Tentati | S | \mathbf{C} | S | T | | he
r | ŗ | Гota | 1 | | area | Training | 0. | Duration | On/Of
f | ve
Date | M | F | M | F | M | F | M | F | Т | | | management
of Rabi
oilseeds | | | | | | | | | | | | | | | | Integrated pest management of mango | 1 | 1 | OFF | 10.02.2 | 8 | 1 | 3 | 1 | 1 0 | 2 | 21 | 4 | 25 | | Integrated Disease Management | Integrated disease management of jute | 2 | 1 | OFF | 10.05.2
2
14.06.2
2 | 2 5 | 1 | 6 | 2 | 1 2 | 4 | 43 | 7 | 50 | | | Integrated disease management of cucurbitaceo us crops | 1 | 1 | OFF | 17.05.2 | 8 | 2 | 3 | 0 | 1 0 | 2 | 21 | 4 | 25 | | | Integrated disease management of winter vegetables | 1 | 1 | OFF | 27.10.2
2 | 1 2 | 2 | 2 | 0 | 9 | 0 | 23 | 2 | 25 | | | Integrated
disease
management
Rabi pulses | 2 | 1 | OFF | 11.11.2
2
24.11.2
2 | 2 4 | 1 | 6 | 2 | 1 3 | 4 | 43 | 7 | 50 | | | Integrated
disease
management
of mango | 1 | 1 | OFF | 21.03.2 | 8 | 1 | 3 | 1 | 1 0 | 2 | 21 | 4 | 25 | | Bio control of
pests and
diseases | Biological
control of
fruit fly in
mango | 1 | 1 | Off | 14.02.2 | 8 | 1 | 3 | 1 | 1 0 | 2 | 21 | 4 | 25 | | | Biological
control of
fruit fly in
cucurbitacio
us crops | 1 | 1 | Off | 21.06.2 | 1 3 | 1 | 1 | 1 | 9 | 0 | 23 | 2 | 25 | | | Biological
control of
fruit fly in
guava | 1 | 1 | Off | 17.06.2
2 | 1 2 | 2 | 2 | 0 | 9 | 0 | 23 | 2 | 25 | | Production of
bio control
agents and bio
pesticides | Small scale
production
of
Trichoderma | 1 | 1 | on | 28.10.2 | 7 | 0 | 1 | 0 | 1 2 | 0 | 20 | 0 | 20 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |--------------------|---|----|----------|------------|------------------------------|--------|---|----|-------|--------|-------|------|------|----| | Thematic | Title of | N | ion | Venue | Tentati | S | C | S | T | | he | ŗ | Γota | ı | | area | Training | 0. | Duration | On/Of
f | ve
Date | М | F | M | F | M | F | M | F | Т | | | viride | | | | | | | | | | | | | | | Others | Nursery management of early winter season crops against pest & diseases | 2 | 1 | OFF | 15.07.2
2
25.07.2
2 | 2 4 | 1 | 6 | 2 | 1 3 | 4 | 43 | 7 | 50 | | VI. Production | | : | 1 | | | | | ı | 1 | | | 1 | 1 | | | Seed
Production | Seed
production
and storage
of Elephant
Foot Yam | 1 | 1 | OFF | April | 1 2 | 1 | 2 | 1 | 9 | 0 | 23 | 2 | 25 | | | Indigenous
methods of
storing seeds | 1 | 1 | OFF | April | 1 4 | 2 | 2 | 1 | 1 | 0 | 27 | 3 | 30 | | | Pollination
management
in vegetable
seed
production | 1 | 1 | OFF | May | 1 2 | 1 | 2 | 1 | 9 | 0 | 23 | 2 | 25 | | | Seed
Production
of
Blackgram | 2 | 1 | OFF | June | 2 5 | 1 | 6 | 2 | 1 2 | 4 | 43 | 7 | 50 | | | Seed
Production
of
Greengram | 2 | 1 | OFF | July | 2
5 | 1 | 6 | 2 | 1 2 | 4 | 43 | 7 | 50 | | | Seed
Production
of Mustard | 2 | 1 | OFF | August | 2
4 | 1 | 6 | 2 | 1 | 4 | 43 | 7 | 50 | | | Pollination
management
in vegetable
seed
production | 1 | 1 | ON | August | 1 2 | 1 | 2 | 1 | 9 | 0 | 23 | 2 | 25 | | | Seed
Production
of Lentil | 2 | 1 | OFF | Septem
ber | 2
4 | 1 | 6 | 2 | 1
3 | 4 | 43 | 7 | 50 | | | Seed
Production
of Chickpea | 2 | 1 | OFF | October | 2
4 | 1 | 6 | 2 | 1
3 | 4 | 43 | 7 | 50 | | | Seed
production
of paddy | 2 | 1 | OFF | Decemb
er | 2
4 | 1 | 6 | 2 | 1
3 | 4 | 43 | 7 | 50 | | | | | | | | | | No | o. of | Part | ticip | ants | | | |--|---|-------------|----------|------------|----------------------------------|-----|---|----|-------|--------|----------|------|------|----| | | | 3. 7 | on | Venue | Tentati | S | C | S | Т | | he | r | Γota | 1 | | Thematic area | Title of
Training | N
o. | Duration | On/Of | ve | | | | |] | <u>r</u> | | | | | arca | 11aming | 5 • | nQ | f | Date | M | F | M | F | M | F | M | F | Т | | | Seed
Production
of
Groundnut | 1 | 1 | OFF | January | 1 2 | 1 | 2 | 1 | 9 | 0 | 23 | 2 | 25 | | | Seed
Production
of Sesame | 2 | 1 | OFF | Februar
y | 4 | 1 | 6 | 2 | 3 | 4 | 43 | 7 | 50 | | | | | | | | | | | | | | | | | | Planting material production Bio fertilizer production | | | | | | | | | | | | | | | | Vermi
compost
production | Production
technology
of vermi
compost | 2 | 1 | ON | 30.08.2
022
10.11.2
022 | 2 5 | 2 | 0 | 0 | 1 8 | 3 | 43 | 5 | 48 | | Organic
manures
production
Mushroom | | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | |
Apiculture | | | | | | | | | | | | | | | | VII. Capacity I | Building and G | roup | Dyna | amics | | 1 | l | l | | | | 1 | | | | Leadership development | | | | | | | | | | | | | | | | Group
dynamics | Developmen
t of
extension
communicati
on
perspective | 1 | 1 | ON/O
FF | 03.07.2
022 | 1 4 | 4 | 0 | 0 | 1 4 | 8 | 28 | 1 2 | 40 | | Formation and Management of SHGs | | | | | | | | | | | | | | | | Mobilization
of social
capital | Developmen
t of
household
livelihood
status | 1 | 1 | ON/O
FF | 17.08.2
022 | 1 0 | 5 | 0 | 0 | 1
7 | 8 | 27 | 1 3 | 40 | | Entrepreneuria 1 development of farmers/youth s | Developmen
t of
entrepreneur
ial skills | 2 | 1 | ON/O
FF | 09.12.2
022 | 1 0 | 6 | 0 | 0 | 2 | 3 | 31 | 0 9 | 40 | | WTO and IPR | No | o. of | Par | ticip | ants | | | |----------------------------------|---|----|----------|----------------|---------------|-----|---|----|----------------|-----|-------|------|-----|----| | Thematic | Title of | N | Duration | Venue
On/Of | Tentati
ve | S | C | S | F M F 1 1 2 8 | | ŗ | Гota | 1 | | | area | Training | 0. | Dura | f | Date | M | F | M | F | M | F | M | F | Т | | issues | | | | | | | | | | | | | | | | Others | | | | | | | | | | | | | | | | IX. Agro forest | try | | | | | | | | | | | | | | | Integrated
Farming
Systems | Components
of integrated
farming
system | 2 | 1 | OFF | July | 2 0 | 6 | 3 | 1 | | 8 | 35 | 1 5 | 50 | | | Space/land
allocation in
Integrated
farming
system
models. | 2 | 1 | OFF | August | 2 0 | 6 | 3 | 1 | | 8 | 35 | 1 5 | 50 | | | Structure of
Integrated
farming
system | 2 | 1 | ON | Novemb
er | 2 0 | 6 | 3 | 1 | 1 2 | 8 | 35 | 1 5 | 50 | ## (b) Rural youths | | | | u | Ven | | | | | | Parti | | | | | |---|---|----|----------|------------|----------------------------------|--------|-----|-----|----|-------|----|----|--------|--------| | Thematic | | N | tio | ue | Tentative | S | C | S | ST | Oth | er | | Γotal | | | area | Title of Training | 0. | Duration | On/
Off | Date | M | F | M | F | M | F | M | F | Т | | Mushroom | Production
technology of
mushroom | 3 | 4 | ON | 15.06.20
14.08.20
15.10.20 | 3 0 | 9 | 3 0 | 9 | 6 | 6 | 66 | 2 4 | 9 | | Integrated
farming
system | Management of different component of integrated farming system | 1 | 1 | ON | May | 1 0 | 4 | 2 | 1 | 10 | 3 | 22 | 8 | 3 0 | | Seed production | Techniques of open pollinated and hybrid seed production of different vegetable crops | 2 | 1 | ON | Septembe
r | 2 4 | 1 0 | 6 | 2 | 23 | 5 | 53 | 1 7 | 7 0 | | | Hybrid seed
production of
Rice | 2 | 1 | ON | December | 2 4 | 1 0 | 6 | 2 | 23 | 5 | 53 | 1
7 | 7
0 | | Production of organic | Compost production technologies | 2 | 2 | ON | 19.07.22
06.03.23 | 1
6 | 3 | 7 | 1 | 10 | 3 | 33 | 7 | 4
0 | | inputs | Preparation of Vermicompost | 2 | 1 | ON | 08.07.202
0 | 2 0 | 7 | 4 | 2 | 22 | 5 | 46 | 1
4 | 6
0 | | Planting
material
production | Planting material production of Horticultural crops | 1 | 2 | ON | 24.09.20 | 5 | 1 5 | 0 | 2 | 2 | 6 | 7 | 2 3 | 3 0 | | Vermicult
ure | Vermicompost production methodologies | 1 | 2 | ON | 21.03.23 | 8 | 2 | 3 | 1 | 9 | 2 | 20 | 5 | 2 5 | | Protected cultivation | Protected cultivation of vegetable crops | 1 | 4 | On | 13.12.22
to
16.12.22 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 2 5 | | Production
of Bio
control
agents | Production
technology of
Trichoderma spp | 1 | 2 | ON | 28.09.22 | 8 | 2 | 0 | 0 | 8 | 2 | 16 | 4 | 2 0 | | Bee
keeping | Scientific bee
keeping
techniques | 1 | 7 | on | 20.06.22-
26.06.22 | 1 2 | 1 | 0 | 0 | 10 | 2 | 22 | 3 | 2 5 | | Integrated
nutrient
manageme
nt | Management of Soil health | 1 | 1 | ON | 18.09.20
10.03.20 | 7 | 2 | 3 | 1 | 9 | 3 | 19 | 6 | 2 5 | | Nursery
Managem
ent | Nursery Management of Horticulture crops | 1 | 4 | On | 12.07.22
to
15.07.22 | 5 | 3 | 2 | 1 | 8 | 6 | 15 | 1 0 | 2 5 | | | | | u | Ven | | | | N | lo. of | Parti | cipa | nts | | | |----------------|---|----|-------|------------|----------------------------|---|---|---|--------|--------------|------|-----|-------|-----| | Thematic | | N | ation | ue | Tentative | S | C | S | ST | Oth | er |] | Cotal | | | area | Title of Training | 0. | Dura | On/
Off | Date | M | F | M | F | M | F | M | F | Т | | Value addition | Value addition in vegetables and flowers. | 1 | 4 | On | 17.05.22
to
20.05.22 | 0 | 7 | 0 | 2 | 0 | 2 | 0 | 3 0 | 3 0 | ## (c) Extension functionaries | Thrust | | | nc | Venue | Tentativ | | | No | . of | Part | icipa | nts | | | |---|---|----|----------|-------|------------------------------|-----|-----|----|------|------|-------|--------|------|-----| | area/ | Title of | No | atic | On/Of | e | S | C | S | Γ | Ot | her | , | Tota | l | | Thematic
area | Training | • | Duration | f | Date | M | F | M | F | M | F | M | F | T | | Productivity
enhanceme
nt in field
crops | Important
cultural
practices of
different
field crops | 3 | 2 | ON | October,
March | 1 8 | 6 | 4 | 1 | 2 5 | 6 | 4 7 | 1 3 | 6 0 | | Integrated pest managemen t | Integrated pest & disease manageme nt of crops | 1 | 1 | ON | 31.10.22 | 9 | 1 | 1 | 0 | 8 | 1 | 1 8 | 2 | 2 0 | | Value
addition | Value addition and preservatio n of different field crops | 2 | 1 | ON | February | 2 2 | 4 | 4 | 2 | 2 4 | 4 | 5 0 | 1 0 | 6 0 | | Production and use of | Different
methods of
composting | 1 | 1 | ON | 08.12.22 | 9 | 1 | 1 | 0 | 1 2 | 2 | 2 2 | 3 | 2 5 | | organic
inputs | Bio
pesticide
production | 2 | 1 | ON | 12.11.22
08.12.22 | 2 8 | 4 | 4 | 0 | 4 0 | 4 | 7
2 | 8 | 8 0 | | Seed
Production | Seed
certificatio
n procedure | 2 | 1 | ON | Novembe
r
Decembe
r | 2 0 | 1 0 | 0 | 0 | 2 0 | 1 0 | 4 0 | 2 0 | 6 0 | ## **Abstract of Training: Consolidated table (ON and OFF Campus)** #### **Farmers and Farm women** | | | SC | | | CT | | | | | |-------------------------------|-----|----|-----|-----|----|----|-----|-----|-----| | es IVI F I | N / | | | | ST | | | | | | | M | F | T | M | F | T | M | F | T | | I. Crop | | | | | | | | | | | Production | | | | | | | | | | | Weed 3 35 5 40 3 | 32 | 8 | 40 | 7 | 3 | 10 | 74 | 16 | 90 | | Management | 32 | O | 40 | , | 3 | 10 | 7- | 10 | 70 | | Resource | | | | | | | | | | | Conservation | | | | | | | | | | | Technologies | | | | | | | | | | | Cropping | | | | | | | | | | | Systems | | | | | | | | | | | Crop | | | | | | | | | | | Diversificatio | | | | | | | | | | | n | | | | | | | | | | | Integrated 5 60 8 68 5 | 52 | 1 | 65 | 12 | 5 | 17 | 124 | 26 | 150 | | Farming | | 3 | 0.0 | 12 | | 1, | 12. | | 100 | | Water | | | | | | | | | | | management | | | | | | | | | | | Seed | | | | | | | | | | | production | | | | | | | | | | | Nursery 5 60 8 68 5 | 52 | 1 | 65 | 12 | 5 | 17 | 124 | 26 | 150 | | management | _ | 3 | | | | | | | | | Integrated | | _ | | _ | | _ | | _ | | | | 12 | 3 | 15 | 2 | 1 | 3 | 24 | 6 | 30 | | Management | | | | | | | | | | | Integrated | | | | | | | | | | | Crop | | | | | | | | | | | Management | | | | | | | | | | | Fodder 1 10 2 12 | 12 | 3 | 15 | 2 | 1 | 3 | 24 | 6 | 30 | | production 1 10 2 12 | | | | | | | | | | | Production of organic inputs | | | | | | | | | | | organic inputs | | | | | | | | | | | Others, | 12 | 3 | 15 | 20 | 10 | 41 | 200 | (2) | 260 | | (cultivation of 12 145 19 164 | 4 | 1 | 5 | 29 | 12 | 41 | 298 | 62 | 360 | | crops) | | 1 | | | | | | 10 | | | TOTAL 19 200 50 0 | 45 | | Λ | 225 | 31 | 0 | 470 | | 570 | | 101AL 19 200 50 0 | 45 | 9 | 0 | 225 | 31 | U | 4/0 | 0 | 570 | | II. | | | | | | | | | | | Horticulture | | | | | | | | | | | a) Vegetable | | | | | | | | | | | Crops | Integrated | | | | | | | | | | | nutrient | | | | | | | | | | | management | | | | | | | | | | | Water | | | | | | | | | | | management | | | | | | | | | | | 7EN 4° | No. of | | | N | o. of 1 | Parti | cipan | ts | | | Gra | and T | otal | |----------------------|--------|----|-------|-----|---------|-------|-------|----|----|---|-----|-------|------| | Thematic
Area | Cours | | Other | | | SC | | | ST | | | | | | | es | M | F | T | M | F | T | M | F | T | M | F | T | | Enterprise | | | | | | | | | | | | | | | development | | | | | | | | | | | | | | | Skill | | | | | | | | | | | | | | | development
Yield | | | | | | | | | | | | | | | increment | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | low volume | | | | | | | | | | | | | | | and high | 3 | 24 | 18 | 42 | 15 | 9 | 24 | 6 | 3 | 9 | 45 | 30 | 75 | | value crops | | | | | | | | | | | | | | | Off-season | | | | | | | | | | | 30 | 20 | 50 | | vegetables | 2 | 16 | 12 | 28 | 10 | 6 | 16 | 4 | 2 | 6 | | | | | Nursery | | | | • • | | _ | | | _ | _ | 30 | 20 | 50 | | raising | 2 | 16 | 12 | 28 | 10 | 6 | 16 | 4 | 2 | 6 | | | | | Exotic | | | | | | | | | | | | | | | vegetables | | | | | | | | | | | | | | | like Broccoli | | | | | | | | | | | | | | | Export | | | | | | | | | | | | | | | potential | | | | | | | | | | | | | | | vegetables | | | | | | | | | | | | | | | Grading and | | | | | | | | | | | | | | | standardizatio | | | | | | | | | | | | | | | n | | | | | | | | | | | | | | | Protective | | | | | | | | | | | | | | | cultivation | | | | | | | | | | | | | | | (Green | 1 | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | | Houses, | 1 | 1 | | U | 17 |) | 3 | 0 | | 1 | 3 | 13 | 10 | | Shade Net | | | | | | | | | | | | | | | etc.) | | | | | | | | | | |
 | | | Others, if any | | | | | | | | | | | | | | | (Cultivation | 2 | 16 | 12 | 28 | 10 | 6 | 16 | 4 | 2 | 6 | 30 | 20 | 50 | | of Vegetable | _ | 10 | | | 10 | | 10 | | _ | | | | | | by Women) | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | b) Fruits | | | | | | | | | | | | | | | Training and Pruning | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | Layout and | | | | | | | | | | | | | | | Management | | | | | | | | | | | | | | | of Orchards | | | | | | | | | | | | | | | Cultivation of | 2 | 16 | 12 | 28 | 10 | 6 | 16 | 4 | 2 | 6 | 30 | 20 | 50 | | Fruit | | 10 | 12 | 20 | 10 | U | 10 | 4 | | U | 30 | 20 | 30 | | Management | | | | | | | | | | | | | | | of young | | | | | | | | | | | | | | | Name | (E) 4° | No. of | | | N | lo. of] | Parti | cipan | ts | | | Gra | and T | otal | |--|---------------|--------|---|---|-----|-----------------|-------|-------|----|---|---|-----|-------|------| | Plants/orchard S | Thematic | Cours | | | • | | SC | | | | | | | | | Rejuvenation of old orchards | | es | M | F | T | M | F | T | M | F | T | M | F | T | | Rejuvenation of old or orchards | _ | | | | | | | | | | | | | | | of old orchards Export potential fruits Micro irrigation systems of orchards Plant propagation techniques Others, if any(INM) TOTAL C) Ornamental Plants Nursery Management of potted plants Export potential of ormamental plants Propagation techniques of Ormamental Plants Others, if any 1 8 6 14 5 3 8 8 2 1 3 15 10 25 TOTAL d) Plantation corpose Production and Management techniques of Production and Management techniques of Ornamental Plants Propagation techniques of Ornamental Plants Others, if any 1 8 6 14 5 3 8 8 2 1 3 15 10 25 Production and Management technology Processing | | | | | | | | | | | | | | | | Orchards Export Potential fruits | - | | | | | | | | | | | | | | | Export potential fruits Micro propagation techniques Management of potted plants Plant propagation Propagati | | | | | | | | | | | | | | | | Potential fruits Micro M | | | | | | | | | | | | | | | | Micro irrigation systems of orchards | • | | | | | | | | | | | | | | | Irrigation Systems of orchards Plant P | | | | | | | | | | | | | | | | Systems of orchards | | | | | | | | | | | | | | | | Orchards Image: Company of the | | | | | | | | | | | | | | | | Plant | | | | | | | | | | | | | | | | Propagation techniques | | | | | | | | | | | | | | | | Techniques Cothers, if any(INM) any | | | | | | | | | | | | | | | | Others, if any(INM) | | | | | | | | | | | | | | | | Any(INM) Column | | | | | | | | | | | | | | | | Commental Plants 1 8 6 14 5 3 8 2 1 3 15 10 25 | | | | | | | | | | | | | | | | C Ornamental Plants | any(IINM) | | | | | | | | | | | | | | | Ornamental Plants Image: Company of the Com | TOTAL | | | | | | | | | | | | | | | Plants Image: control of the display t | c) | | | | | | | | | | | | | | | Nursery Management 1 8 6 14 5 3 8 2 1 3 15 10 25 Management of potted plants Image: Second potential of potential of ornamental plants Image: Second potential potential potential plants Image: Second potential potential potential plants Image: Second potential potential plants Image: Second | Ornamental | | | | | | | | | | | | | | | Management 1 8 6 14 5 3 8 2 1 3 15 10 25 Management of potted plants Export Image: square of potential of ornamental plants plants Image: square of potential plants <td>Plants</td> <td></td> | Plants | | | | | | | | | | | | | | | Management of potted plants Export potential of ornamental plants Propagation techniques of Ornamental Plants Others, if any 1 8 6 14 5 3 8 2 1 3 15 10 25 TOTAL d) Plantation crops Production and Management technology Processing | Nursery | 1 | 0 | | 1.4 | _ | 2 | 0 | 2 | 1 | 2 | 1.5 | 10 | 25 | | of potted plants | Management | 1 | 8 | 0 | 14 | 3 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | Plants | Management | | | | | | | | | | | | | | | Export potential of ornamental plants Propagation techniques of Ornamental Plants Others, if any 1 8 6 14 5 3 8 2 1 3 15 10 25 TOTAL d) Plantation crops Production and Management technology Processing | of potted | | | | | | | | | | | | | | | potential of ornamental plants Propagation techniques of Ornamental Plants Others, if any 1 8 6 14 5 3 8 2 1 3 15 10 25 TOTAL d) Plantation crops Production and Management technology Processing | plants | | | | | | | | | | | | | | | ornamental plants Image: content of plants of plants of techniques tech | Export | | | | | | | | | | | | | | | Propagation | potential of | | | | | | | | | | | | | | | Propagation techniques of Ornamental Plants 1 8 6 14 5 3 8 2 1 3 15 10 25 TOTAL Image: Total content of the conten | ornamental | | | | | | | | | | | | | | | techniques of Ornamental Plants 1 8 6 14 5 3 8 2 1 3 15 10 25 TOTAL 4 5 3 8 2 1 3 15 10 25 TOTAL 4 5 3 8 2 1 3 15 10 25 Production and Management technology 1 8 6 14 5 3 8 2 1 3 15 10 25 | | | | | | | | | | | | | | | | Ornamental Plants Image: Control of the c | | | | | | | | | | | | | | | | Plants Book of the street | | | | | | | | | | | | | | | | Others, if any 1 8 6 14 5 3 8 2 1 3 15 10 25 TOTAL Image: Composition and Management technology M | | | | | | | | | | | | | | | | TOTAL d) Plantation crops Production and Management technology Processing | | | | | | | | | | | | | | | | d) Plantation crops Production and Management technology Processing | | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | Crops Image: Crops of the control | TOTAL | | | | | | | | | | | | | | | Crops Image: Crops of the control | d) Plantation | | | | | | | | | | | | | | | Production and Management technology Processing 1 8 6 14 5 3 8 2 1 3 15 10 25 | | | | | | | | | | | | | | | | and Management technology 1 8 6 14 5 3 8 2 1 3 15 10 25 Processing | | | | | | | | | | | | | | | | Management technology 1 8 6 14 5 3 8 2 1 3 15 10 25 Processing Image: contract technology technology Image: contract technology technology Image: contract technology technology technology Image: contract technology technology technology technology Image: contract technology technology technology technology technology Image: contract technology technolog | | | | | | _ | | | | | | | 4.0 | | | technology Processing | | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | Processing | and value | | | | | | | | | | | | | | | The area of the | No. of | | | N | o. of 1 | Parti | cipan | ts | | | Gra | and T | otal | |------------------|--------|-----------|----------|-----|----------|----------|----------|----------|----------|----------|----------|-------|------| | Thematic
Area | Cours | | Other | • | | SC | | | ST | | | | | | | es | M | F | T | M | F | T | M | F | T | M | F | T | | addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | e) Tuber | | | | | | | | | | | | | | | crops | | | | | | | | | | | | | | | Production | | | | | | | | | | | | | | | and | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | Management | 1 | 0 | 0 | 14 |) | 3 | 0 | 2 | 1 | 3 | 13 | 10 | 23 | | technology | | | | | | | | | | | | | | | Processing | | | | | | | | | | | | | | | and value | | | | | | | | | | | | | | | addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | f) Spices | | | | | | | | | | | | | | | Production | | | | | | | | | | | | | | | and | | _ | | | | _ | _ | _ | | _ | | | | | Management | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | technology | | | | | | | | | | | | | | | Processing | | | | | | | | | | | | | | | and value | | | | | | | | | | | | | | | addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | g) Medicinal | | | | | | | | | | | | | | | and | | | | | | | | | | | | | | | Aromatic | | | | | | | | | | | | | | | Plants | | | | | | | | | | | | | | | Nursery | | | | | | | | | | | | | |
 management | | | | | | | | | | | | | | | Production | | | | | | | | | | | | | | | and | | _ | _ | 1, | _ | _ | _ | _ | | _ | 1.5 | 10 | 2.5 | | management | 1 | 8 | 6 | 14 | 5 | 3 | 8 | 2 | 1 | 3 | 15 | 10 | 25 | | technology | | | | | | | | | | | | | | | Post harvest | | | | | | | | | | | | | | | technology | | | | | | | | | | | | | | | and value | | | | | | | | | | | | | | | addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | 1 | | | 11 | | | 17 | | | | 19 | 79 | 48 | 127 | 33 | 6 | 49 | 192 | 1 | 303 | 304 | 4 | 480 | | III. Soil | | | | | | | | | | | | | | | 111, DUII | I | | <u> </u> | | <u> </u> | | | TEN 4° | No. of | | | N | [0. of] | Parti | cipant | ts | | | Gra | and To | otal | |--|--------|----|-------|-----|-----------------|-------|---------|-----|---------|-----|-----|---------|------| | Thematic | Cours | | Other | • | | SC | | | ST | | | | | | Area | es | M | F | T | M | F | T | M | F | T | M | F | T | | Health and
Fertility
Management | | | | | | | | | | | | | | | Soil fertility management | 11 | 97 | 17 | 114 | 13
3 | 2 2 | 15
5 | 8 | 3 | 11 | 238 | 42 | 280 | | Soil and Water Conservation | | | | | | _ | | | | | | | | | Integrated Nutrient Management | 2 | 22 | 2 | 24 | 22 | 2 | 24 | 2 | 0 | 2 | 46 | 4 | 50 | | Production
and use of
organic inputs | 4 | 22 | 3 | 25 | 20 | 2 | 22 | 2 | 1 | 3 | 44 | 6 | 50 | | Management of Problematic soils | | | | | | | | | | | | | | | Micro nutrient deficiency in crops | 2 | 18 | 2 | 20 | 25 | 1 | 26 | 3 | 1 | 4 | 46 | 4 | 50 | | Nutrient Use
Efficiency | 2 | 18 | 1 | 19 | 20 | 1 | 21 | 0 | 0 | 0 | 38 | 2 | 40 | | Soil and
Water Testing | 2 | 22 | 3 | 25 | 20 | 2 | 22 | 2 | 1 | 3 | 44 | 6 | 50 | | Others, if any | | | | | | 1 | | | 11 | | | 17 | | | TOTAL | 23 | 79 | 48 | 127 | 33 | 6 | 49 | 192 | 11
1 | 303 | 304 | 17
4 | 480 | | IV. Livestock
Production
and
Management | | | | | | | | | | | | | | | Dairy
Management | | | | | | | | | | | | | | | Poultry
Management | | | | | | | | | | | | | | | Piggery
Management | | | | | | | | | | | | | | | Rabbit
Management | | | | | | | | | | | | | | | Disease
Management | | | | | | | | | | | | | ı | | Feed management | | | | | | | | | | | | | | | Production of quality animal products | | | | | | | | | | | | | | | Others, if any (Goat | | | | | | | | | | | | | | | farming) | | | | | | | | | | | | | | | | No. of | | | N | o. of 1 | Parti | cipant | ts | | | Gra | and T | otal | |--------------------------|--------|---|-------|---|---------|-------|--------|----|----|---|-----|-------|------| | Thematic
Area | Cours | | Other | • | | SC | | | ST | | | | | | | es | M | F | T | M | F | T | M | F | T | M | F | T | | TOTAL | 37 II | | | | | | | | | | | | | | | V. Home
Science/Wom | | | | | | | | | | | | | | | en | | | | | | | | | | | | | | | empowermen
t | | | | | | | | | | | | | | | Household | | | | | | | | | | | | | | | food security | | | | | | | | | | | | | | | by kitchen | | | | | | | | | | | | | | | gardening and | | | | | | | | | | | | | | | nutrition
gardening | | | | | | | | | | | | | | | Design and | | | | | | | | | | | | | | | development | | | | | | | | | | | | | | | of | | | | | | | | | | | | | | | low/minimum | | | | | | | | | | | | | | | cost diet | | | | | | | | | | | | | | | Designing and | | | | | | | | | | | | | | | development | | | | | | | | | | | | | | | for high | | | | | | | | | | | | | | | nutrient efficiency diet | | | | | | | | | | | | | | | Minimization | | | | | | | | | | | | | | | of nutrient | | | | | | | | | | | | | | | loss in | | | | | | | | | | | | | | | processing | | | | | | | | | | | | | | | Gender | | | | | | | | | | | | | | | mainstreamin | | | | | | | | | | | | | | | g through
SHGs | | | | | | | | | | | | | | | Storage loss | | | | | | | | | | | | | | | minimization | | | | | | | | | | | | | | | techniques
Enterprise | | | | | | | | | | | | | | | development | | | | | | | | | | | | | | | Value | | | | | | | | | | | | | | | addition | | | | | | | | | | | | | | | Income | | | | | | | | | | | | | | | generation | | | | | | | | | | | | | | | activities for | | | | | | | | | | | | | | | empowerment | | | | | | | | | | | | | | | of rural
Women | | | | | | | | | | | | | | | Location | | | | | | | | | | | | | | | specific | | | | | | | | | | | | | | | drudgery | | | | | | | | | | | | | | | reduction | | | | | | | | | | | | | | | technologies | | | | | | | | | | | | | | | Rural Crafts | | | | | | | | | | | | | | | | No. of | | | N | [o. of] | Parti | cipan | ts | | | Gra | and T | otal | |----------------------|--------|----|---------|-----|----------|-------|-------|----|----|----|-----|-------|------| | Thematic
Area | Cours | | Other | | | SC | | | ST | | | | | | | es | M | F | T | M | F | T | M | F | T | M | F | T | | Capacity | | | | | | | | | | | | | | | building | | | | | | | | | | | | | | | Women and | | | | | | | | | | | | | | | child care | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | VI.Agril. | | | | | | | | | | | | | | | Engineering | | | | | | | | | | | | | | | Installation | | | | | | | | | | | | | | | and | | | | | | | | | | | | | | | maintenance of micro | | | | | | | | | | | | | | | irrigation | | | | | | | | | | | | | | | systems | | | | | | | | | | | | | | | Use of | | | | | | | | | | | | | | | Plastics in | | | | | | | | | | | | | | | farming | | | | | | | | | | | | | | | practices | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | small tools | | | | | | | | | | | | | | | and | | | | | | | | | | | | | | | implements | | | | | | | | | | | | | | | Repair and | | | | | | | | | | | | | | | maintenance | | | | | | | | | | | | | | | of farm | | | | | | | | | | | | | | | machinery | | | | | | | | | | | | | | | and | | | | | | | | | | | | | | | implements | | | | | | | | | | | | | | | Small scale | | | | | | | | | | | | | | | processing | | | | | | | | | | | | | | | and value | | | | | | | | | | | | | | | addition | | | | | | | | | | | | | | | Post Harvest | | | | | | | | | | | | | | | Technology | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | VII. Plant | | | | | | | | | | | | | | | Protection | | | <u></u> | | | | | | | | | | | | Integrated | | | | | 13 | 1 | 14 | | | | | | | | Pest | 12 | 97 | 17 | 114 | 2 | 1 1 | 3 | 29 | 9 | 38 | 258 | 37 | 295 | | Management | | | | | | 1 | ر | | | | | | | | Integrated | | | | | | | | | | | | |] | | Disease | 7 | 54 | 12 | 66 | 77 | 7 | 84 | 20 | 2 | 25 | 151 | 21 | 172 | | Management | | | | | | | | | | | | | | | Bio-control of | | | | | | | | | | | | | | | pests and | 3 | 28 | 2 | 30 | 33 | 4 | 37 | 6 | 2 | 8 | 67 | 8 | 75 | | diseases | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | bio control | | | | | | | | | | | | | | | agents and bio | | | | | | | | | | | | | | | Course Cours Cou | | No. of | | | N | o. of l | Parti | cipant | ts | | | Gra | and To | otal | |--|---------------|--------|-----|-------|-----|---------|-------|--------|-----|----|-----|-----|--------|------| | Carp breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of ornamental fish and prawn Shrimp Faming Edible oyster farming Edibl | Thematic | | | Other | | | | | | ST | | | | | | Others, if any 2 | Area | | M | F | T | M | F | T | M | F | T | M | F | T | | Others, if any 2 | pesticides | | | | | | | | | | | | | | | TOTAL 25 273 23 296 62 8 80 204 35 239 539 76 615 VIII. Fisheries Integrated fish farming Carp breeding and hatchery management Carp fry and fingerling rearing Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond
Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | 2 | 13 | 4 | 17 | 24 | 1 | 25 | 6 | 2 | 8 | 43 | 7 | 50 | | VIII. Fisheries Integrated fish farming Carp breeding and hatchery management Carp fry and fingerling rearing Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of oronamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | , , | | | | | | | | | | | | | | | Integrated fish farming Carp breeding and hatchery management Carp fry and fingerling rearing Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | TOTAL | 25 | 273 | 23 | 296 | 62 | 8 | 80 | 204 | 35 | 239 | 539 | 76 | 615 | | Carp breeding and hatchery management Carp fry and fingerling rearing Composite fish culture & fish culture & fish cluture & fish cluture & fish conditions and the first proparation & fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition addition of thers, if any | | | | | | | | | | | | | | | | Carp breeding and hatchery management Carp fry and fingerling rearing Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition others, if any | | | | | | | | | | | | | | i | | and hatchery management Carp fry and fingerling rearing Composite fish culture & fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish proccessing and value addition Others, if any | | | | | | | | | | | | | | | | management Carp fry and fingerling rearing Composite fish culture & fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition and culture of processing and value addition and culture of collers, if any | | | | | | | | | | | | | | í | | Carp fry and fingerling rearing Composite fish culture & fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | fingerling rearing Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | rearing Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | Composite fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | fish culture & fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | Fish disease Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | Fish feed preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | preparation & its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | its application to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | to fish pond, like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | like nursery, rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | rearing & stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | stocking pond Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | Hatchery management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | management and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | and culture of freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | - | | | | | | | | | | | | | í | | freshwater prawn Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | í | | Breeding and culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | |
 | | | ı | | culture of ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | ornamental fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | fishes Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | Portable plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | plastic carp hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | hatchery Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | Pen culture of fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | fish and prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | prawn Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | Shrimp farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | ı | | farming Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | Edible oyster farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | farming Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | Pearl culture Fish processing and value addition Others, if any | | | | | | | | | | | | | | | | Fish processing and value addition Others, if any | Pearl culture | | | | | | | | | | | | | | | processing and value addition Others, if any | | | | | | | | | | | | | | | | and value addition Others, if any | | | | | | | | | | | | | | | | Addition Others, if any | | | | | | | | | | | | | | | | Others, if any | No. of | | | N | o. of 1 | Parti | cipant | ts | | | Gra | and T | otal | |----------------------------------|--------|-----|-------|-----|---------|-------|--------|-----|----|-----|-----|-------|------------| | Thematic | Cours | | Other | • | | SC | _ | | ST | | | | | | Area | es | M | F | T | M | F | T | M | F | T | M | F | T | | IX. | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | Inputs at site | | | | | | | | | | | | | | | Seed | 19 | 136 | 28 | 164 | 23 | 1 | 24 | 52 | 19 | 71 | 420 | 60 | 480 | | Production | 15 | 130 | 20 | 104 | 2 | 3 | 5 | 32 | 13 | /1 | 420 | 00 | 460 | | Planting | | | | | | | | | | | | | | | material | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | Bio-agents | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | Bio-pesticides | 1 | 12 | 0 | 12 | 7 | 0 | 7 | 1 | 0 | 1 | 20 | 0 | 20 | | production | 1 | 12 | U | 12 | , | Ü | , | | Ü | - | 20 | U | | | Bio-fertilizer | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | Vermi- | _ | | | | | | | | | | | | | | compost | 2 | 25 | 2 | 27 | 0 | 0 | 0 | 18 | 3 | 21 | 43 | 5 | 48 | | production | | | | | | | | | | | | | | | Organic | | | | | | | | | | | | | | | manures | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | fry and | | | | | | | | | | | | | | | fingerlings Production of | | | | | | | | | | | | | | | Bee-colonies | | | | | | | | | | | | | | | and wax | | | | | | | | | | | | | | | sheets | | | | | | | | | | | | | | | Small tools | | | | | | | | | | | | | | | and | | | | | | | | | | | | | | | implements | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | livestock feed | | | | | | | | | | | | | | | and fodder | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | Fish feed | | | | | | | | | | | | | | | Others, if any | 1 | | | | | | | | | TOTAL | 22 | 264 | 15 | 279 | 53 | 9 | 72 | 166 | 31 | 197 | 483 | 65 | 548 | | | | | | | | | | | | | | | | | X. Capacity | | | | | | | | | | | | | · <u> </u> | | Building and | | | | | | | | | | | | | | | Group
Dynamics | | | | | | | | | | | | | | | Leadership | | | | | | | | | | | | | | | development | | | | | | | | | | | | | | | Group | 1 | 14 | 8 | 22 | 14 | 4 | 18 | 0 | 0 | 0 | 28 | 12 | 40 | | dynamics | 1 | 14 | 0 | 22 | 14 | 4 | 10 | U | U | U | 40 | 12 | 40 | | Formation and Management of SHGs | | | | | | | | | | | | | | | (F) 4° | No. of | | | N | o. of 1 | Parti | cipant | ts | | | Gra | and T | otal | |------------------------------|--------|-----|-------|-----|---------|-------|--------|-----|-----|-----|-----|-------|------| | Thematic | Cours | | Other | | | SC | | | ST | | | | | | Area | es | M | F | T | M | F | T | M | F | T | M | F | T | | Mobilization | | | | | | | | | | | | | | | of social capital | 1 | 17 | 8 | 25 | 10 | 5 | 15 | 0 | 0 | 0 | 27 | 13 | 40 | | Entrepreneuri al | | | | | | | | | | | | | | | development | | | | | | | | | | | | | 1 | | of | 2 | 21 | 3 | 24 | 10 | 6 | 16 | 0 | 0 | 0 | 31 | 09 | 40 | | farmers/youth | | | | | | | | | | | | | 1 | | S | | | | | | | | | | | | | | | WTO and IPR | | | | | | | | | | | | | | | issues | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | 4 | 34 | 15 | 49 | 0 | 0 | 0 | 52 | 19 | 71 | 86 | 34 | 120 | | XI Agro- | | | | | | | | | | | | | | | forestry | | | | | | | | | | | | | | | Production technologies | | | | | | | | | | | | | | | Nursery | | | | | | | | | | | | | | | management | | | | | | | | | | | | | | | Integrated | | | | | | | | | | | | | 1 | | Farming | 6 | 60 | 18 | 78 | 9 | 3 | 12 | 36 | 24 | 60 | 105 | 45 | 150 | | Systems | | | 40 | =0 | | _ | -10 | 2.5 | - 1 | | 40= | | 4.50 | | TOTAL | 6 | 60 | 18 | 78 | 9 | 3 | 12 | 36 | 24 | 60 | 105 | 45 | 150 | | XII. Others
(Pl. Specify) | | | | | | | | | | | | | | | CDAND | | 115 | 20 | 136 | 21 | 8 | 29 | 107 | 28 | 135 | 244 | 56 | 301 | | GRAND
TOTAL | 117 | 8 | 2 | 0 | 8 | 1 | 9 | 2 | 1 | 3 | 8 | 3 | 3 | ## **Rural youth** | | NIC | | | N | lo. of | Parti | cipant | S | | | C- | on d T | a4a1 | |------------------------------|-------------------|----|------|----|--------|-------|--------|----|----|----|-----|--------|------| | Thematic Area | No. of
Courses | (| Othe | | | SC | | | ST | | Gr | and T | otai | | | Courses | M | F | T | M | F | T | M | F | T | M | F | T | | Mushroom | 3 | 6 | 6 | 12 | 30 | 9 | 39 | 30 | 9 | 39 | 66 | 24 | 90 | | Production | | | _ | | | | | | - | | | | | | Bee-keeping | 1 | 10 | 2 | 12 | 12 | 1 | 13 | 0 | 0 | 0 | 22 | 3 | 25 | | Integrated | 1 | 10 | 3 | 13 | 10 | 4 | 14 | 2 | 1 | 3 | 22 | 8 | 30 | | farming | | | | | | | | | | | | | | | Seed production | 4 | 46 | 10 | 56 | 48 | 20 | 68 | 12 | 4 | 16 | 106 | 34 | 140 | | Production of | 4 | 32 | 8 | 33 | 23 | 30 | 23 | 9 | 7 | 16 | 79 | 21 | 100 | | organic inputs | | | | | | | | | | | | | | | Planting material production | 1 | 2 | 6 | 8 | 5 | 15 | 20 | 0 | 2 | 2 | 7 | 23 | 30 | | Vermi-culture | 1 | 9 | 2 | 11 | 8 | 2 | 10 | 3 | 1 | 4 | 20 | 5 | 25 | | Sericulture | 1 | | | 11 | | | 10 | 3 | | | 20 | , | 23 | | Protected | | | | | | | | | | | | | | | cultivation of | 1 | 14 | 0 | 14 | 2 | 0 | 2 | 0 | 0 | 0 | 16 | 0 | 16 | | vegetable crops | 1 | 1. | | 1. | _ | | _ | | | | 10 | O | 10 | | Commercial fruit | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | Production of | | | | | | | | | | | | | | | bio control | | | 2 | 10 | 0 | 2 | 10 | | | | 1.0 | | 20 | | agents and bio | 1 | 8 | 2 | 10 | 8 | 2 | 10 | 0 | 0 | 0 | 16 | 4 | 20 | | pesticides | | | | | | | | | | | | | | | Integrated | | | | | | | | | | | | | | | nutrient | 1 | 9 | 3 | 12 | 7 | 2 | 9 | 3 | 1 | 4 | 19 | 6 | 25 | | management | | | | | | | | | | | | | | | Repair and | | | | | | | | | | | | | | | maintenance of | | | | | | | | | | | | | | | farm machinery | | | | | | | | | | | | | | | and implements | | | | | | | | | | | | | | | Nursery | | | | | | | | | | | | | | | Management of | 1 | 14 | 0 | 14 | 2 | 0 | 2 | 0 | 0 | 0 | 16 | 0 | 16 | | Horticulture | | | | | | | | | | | | | | | crops | | | | | | | | | | | | | | | Training and | | | | | | | | | | | | | | | pruning of orchards | | | | | | | | | | | | | | | Value addition | 1 | 14 | 0 | 14 | 2 | 0 | 2 | 0 | 0 | 0 | 16 | 0 | 16 | | Production of | 1 | 17 | 0 | 17 | | 0 | | 0 | 0 | 0 | 10 | U | 10 | | quality animal | | | | | | | | | | | | | | | products | | | | | | | | | | | | | | | Dairying | | | | | | | | | | | | | | | Sheep and goat | | | | | | | | | | | | | | | rearing | | | | | | | | | | | | | | | Quail farming | | | | | | | | | | | | | | | Piggery | | | | | | | | | | | | | | | Rabbit farming | | | | | | | | | | | | | | | Poultry | | | | | | | | | | | | | | | production | | | | | | | | | | | | | | | Ornamental | • | | | | 1 | | | | NI C | | | N | o. of | Parti | cipant | S | | | C - | 1 T | -4-1 | |--------------------|---------|-----|------|-----|-------|-------|--------|-----|----|-----|------------|-------|------| | Thematic Area | No. of | | Othe | r | | SC | | | ST | | Gr | and T | otai | | | Courses | M | F | T | M | F | T | M | F | T | M | F | T | | fisheries | | | | | | | | | | | | | | | Para vets | | | | | | | | | | | | | | |
Para extension | | | | | | | | | | | | | | | workers | | | | | | | | | | | | | | | Composite fish | | | | | | | | | | | | | , | | culture | | | | | | | | | | | | | | | Freshwater | | | | | | | | | | | | | , | | prawn culture | | | | | | | | | | | | | | | Shrimp farming | | | | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | | | | Cold water | | | | | | | | | | | | | | | fisheries | | | | | | | | | | | | | | | Fish harvest and | | | | | | | | | | | | | | | processing | | | | | | | | | | | | | | | technology | | | | | | | | | | | | | | | Fry and | | | | | | | | | | | | | | | fingerling rearing | | | | | | | | | | | | | | | Small scale | | | | | | | | | | | | | | | processing | | | | | | | | | | | | | | | Post Harvest | | | | | | | | | | | | | İ | | Technology | | | | | | | | | | | | | | | Tailoring and | | | | | | | | | | | | | ı | | Stitching | | | | | | | | | | | | | | | Rural Crafts | | | | | | | | | | | | | | | Enterprise | | | | | | | | | | | | | Í | | development | | | | | | | | | | | | | | | Others if any | | | | | | | | | | | | | ļ | | (ICT application | | | | | | | | | | | | | Ī | | in agriculture) | | | | | | | | | | | | | | | TOTAL | 20 | 174 | 78 | 252 | 65 | 25 | 90 | 148 | 75 | 223 | 387 | 178 | 565 | #### **Extension functionaries** | | | | | ľ | No. of Pa | artici | pants | <u> </u> | | | ~ | | | |-----------------------|---------|----|------|------------|-----------|--------|-------|----------|----|----|-----|-------|------------| | Thematic Area | No. of | (| Othe | r | | SC | _ | | ST | | Gra | ınd T | otal | | | Courses | M | F | T | M | F | T | M | F | T | M | F | T | | Productivity | | | | | | | | | | | | | | | enhancement in | 3 | 25 | 6 | 31 | 18 | 6 | 24 | 4 | 1 | 5 | 47 | 13 | 60 | | field crops | | | | | | | | | | | | | | | Integrated Pest | | | | | | | | | | | | | | | disease | 1 | 8 | 1 | 9 | 9 | 1 | 10 | 1 | 0 | 1 | 18 | 2 | 20 | | Management | | | | | | | | | | | | | | | Bio pesticide | | | | | | | | | | | | | | | production | 2 | 40 | 4 | 44 | 28 | 4 | 32 | 4 | 0 | 4 | 72 | 8 | 80 | | technology | | | | | | | | | | | | | | | Integrated Nutrient | | | | | | | | | | | | | | | management | | | | | | | | | | | | | | | Rejuvenation of old | | | | | | | | | | | | | | | orchards | | | | | | | | | | | | | | | Value addition | 4 | 34 | 8 | 42 | 42 | 24 | 66 | 8 | 4 | 12 | 84 | 36 | 120 | | Protected cultivation | 2 | 10 | 4 | 1.4 | 200 | 20 | 40 | 4 | 2 | | 24 | 26 | <i>c</i> 0 | | technology | 2 | 10 | 4 | 14 | 20 | 20 | 40 | 4 | 2 | 6 | 34 | 26 | 60 | | Formation and | | | | | | | | | | | | | | | Management of | | | | | | | | | | | | | | | SHGs | | | | | | | | | | | | | | | Group Dynamics | | | | | | | | | | | | | | | and farmers | | | | | | | | | | | | | | | organization | | | | | | | | | | | | | | | Information | | | | | | | | | | | | | | | networking among | | | | | | | | | | | | | | | farmers | | | | | | | | | | | | | | | Capacity building | | | | | | | | | | | | | | | for ICT application | | | | | | | | | | | | | | | Care and | | | | | | | | | | | | | | | maintenance of farm | | | | | | | | | | | | | | | machinery and | | | | | | | | | | | | | | | implements | | | | | | | | | | | | | | | WTO and IPR | | | | | | | | | | | | | | | issues | | | | | | | | | | | | | | | Management in | | | | | | | | | | | | | | | farm animals | | | | | | | | | | | | | | | Livestock feed and | | | | | | | | | | | | | | | fodder production | | | | | | | | | | | | | | | Household food | | | | | | | | | | | | | | | security | | | | | | | | | | | | | | | Women and Child | | | | | | | | | | | | | | | care | | | | | | | | | | | | | | | Low cost and | | | | | | | | | | | | | | | nutrient efficient | | | | | | | | | | | | | | | diet designing | | | | | | | | | | | | | | | Production and use | 2 | | _ | 5 0 | 27 | _ | 42 | _ | _ | | 0.4 | 1. | 105 | | of organic inputs | 3 | 52 | 6 | 58 | 37 | 5 | 42 | 5 | 0 | 5 | 94 | 11 | 105 | | Gender | | | | | | | | | | | | | | | mainstreaming | | | | | | | | | | | | | | | through SHGs | | | | | | | | | | | | | | | | No of | | | 1 | No. of Pa | rtici | pants | S | | | Cwa | nd T | otol | |---------------------------------|-------------------|-----|------|-----|-----------|-------|-------|-----|----|-----|-----|------|------| | Thematic Area | No. of
Courses | | Othe | r | 5 | SC | | | ST | | Gra | ma 1 | otai | | | Courses | M | F | T | M | F | T | M | F | T | M | F | T | | Crop intensification | | | | | | | | | | | | | | | Others if any (Seed production) | 2 | 20 | 10 | 30 | 20 | 10 | 30 | 0 | 0 | 0 | 40 | 20 | 60 | | TOTAL | 11 | 106 | 26 | 132 | 14 | 3 | 17 | 129 | 27 | 156 | 249 | 56 | 305 | #### 4. Frontline demonstration to be conducted*: #### FLD 1 **Crop** : Mango Thrust Area : Judicious application of insecticide Thematic Area : Plant protection Season : Summer Farming Situation : Irrigated orchard | | Crop
& | Propo
sed | Technolo | Paramet
er
(Data) in | | Cost of
ltivation (Rs.) | | | | | | farı
nstr | | | | | |------------|-----------------|---------------|---|------------------------------------|---------------------------|----------------------------|----------------------|---|---|---|---|--------------|---|-----|-----|-----| | Sl.
No. | variety / | Area
(ha)/ | gy
package
for | relation
to | Na
me | | | S | С | S | Γ | Ot
el | | T | ota | .1 | | 2100 | Enterp
rises | Unit
(No.) | demonstr
ation | technolo
gy
demonst
rated | of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Mango | 10.0
ha | Fruit fly
managem
ent
through
Methyl
euzinol
trap | % fruit infestatio | Met
hyl
euzi
nol | 1.1
2
lak
h | 1.2
2
lak
h | 7 | 0 | 2 | 0 | 6 | 0 | 1 5 | 0 | 1 5 | | | | | | Duratio | Venue | | | No. | of 1 | Part | icip | ants | | | |----------------|---|------|----------------------------|-------------|------------|-----|---|-----|------|------|------|--------|------|--------| | Activit
y | Title of
Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S' | Г | Ot | | 7 | Γota | l | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Preparatio
n of
Methyl
euzinol
trap | 2 | Farmers
& farm
women | 1 | OFF | 3 0 | 2 | 2 | 0 | 1 8 | 8 | 5 0 | 1 0 | 6 0 | | Field
Day | Field day
on Fruit fly
manageme
nt | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1
5 | **Crop** : Guava Thrust Area : Judicious application of insecticide Thematic Area : Plant protection Thematic Area : Plant protection Season : All season Farming Situation : Irrigated orchard | | Crop
& | Propo sed | Technolo | Paramet
er
(Data) in | | Cost of
ltivati
(Rs.) | | | | | | farı
nstr | | | | | |------------|-----------------|---------------|---|------------------------------------|---------------------------|-----------------------------|----------------------|-----|---|---|---|--------------|---|-----|------|-----| | Sl.
No. | variety / | Area
(ha)/ | gy
package
for | relation
to | Na
me | T | - | S | С | S | Г | Ot
en | | 7 | Γota | ıl | | | Enterp
rises | Unit
(No.) | demonstr
ation | technolo
gy
demonst
rated | of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Guava | 5.0 ha | Fruit fly
managem
ent
through
Methyl
euzinol
trap | % fruit infestatio | Met
hyl
euzi
nol | 1.3
5
lak
h | 1.5
2
lak
h | 1 0 | 0 | 0 | 0 | 5 | 0 | 1 5 | 0 | 1 5 | | | | | | Duratio | Venue | | | No. | of l | Parti | icipa | ants | | | |----------------|---|------|----------------------------|-------------|------------|-----|---|-----|------|-------|-------|--------|-----|--------| | Activit
y | Title of
Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S | Г | Ot | | Ţ | ota | l | | | | | | (Days) | • | M | F | M | F | M | F | M | F | T | | Trainin
g | Preparation
of Methyl
euzinol
trap | 1 | Farmers
& farm
women | 1 | OFF | 1 0 | 2 | 5 | 0 | 1 0 | 3 | 2 5 | 5 | 3 0 | | Field
Day | Field day
on Fruit fly
manageme
nt | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1
5 | Crop Cucurbitacious vegetables Judicious application of insecticide Thrust Area Plant protection Thematic Area Season Rainy Irrigated vegetable based farming situation **Farming Situation** | | Cwon | Duan | Technolo | Paramet er | | Cost of
vation | | | | | | farı
nstr | | | | | |-----|-----------------|------------------------|---|--|------------------------|----------------------|----------------------|-----|---|----|---|--------------|---|-----|-----|-----| | Sl. | Crop & variety | Prop
osed
Area | gy
package | (Data) in relation | Na | | | S | С | S' | Т | Ot
e: | | Т | ota | ıl | | No. | Enterp
rises | (ha)/
Unit
(No.) | for
demonst
ration | to
technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Cucurb
its | 5.0 ha | Fruit fly
managem
ent
through
Cuelure
trap | % fruit infestatio | Cuel
ure | 1.0
5
lak
h | 1.1
7
lak
h | 1 4 | 2 | 2 | 1 | 1
6 | 0 | 3 2 | 3 | 3 5 | | | | | | Duratio | Venue | | | No. | of I | Parti | cipa | nts | | | |----------------
---|------|----------------------------|-------------|------------|-----|---|-----|------|--------|------|--------|-----|-----| | Activit
y | Title of
Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S | Γ | Ot | | 7 | ota | 1 | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Preparation
of Methyl
Cuelure
trap | 1 | Farmers
& farm
women | 1 | OFF | 1 0 | 2 | 5 | 0 | 1 0 | 3 | 2 5 | 5 | 3 0 | | Field
Day | Field day
on Fruit fly
manageme
nt | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1
5 | 5 | 2 0 | | Field
visit | Field visit | 2 | Farmers
& farm
women | 1 | OFF | 8 | 2 | 4 | 2 | 1
0 | 4 | 2 2 | 8 | 3 0 | **Crop** : Banana Thrust Area : Judicious application of insecticide Thematic Area : Plant protection **Season** : kharif **Farming Situation** : Irrigated vegetable based farming situation | | | | | Parame
ter | | | | | | | | far
nsti | | | | | |------------|-------------------------------|--------------------------------|--|---|----------------------|----------------------|----------------------|----|---|----|---|-------------|---|-------|---|-----| | Sl.
No. | Crop & variety / Enterp rises | Prop
osed | Technol ogy | (Data) in relation to technolo gy demonst rated | Name
of
Inputs | | | SC | | ST | | Oth
er | | Total | | ıl | | | | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | | | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Banana | 2.0 ha | Panama wilt manage ment through Sucker treatment | yield | Carben
dazim | 2.2
5
lak
h | 2.3
7
lak
h | 7 | 1 | 0 | 0 | 1 2 | 0 | 1 9 | 1 | 2 0 | | | | | | Duratio | Venue | No. of Participants | | | | | | | | | | | |----------------|--|------|----------------------------|-------------|------------|---------------------|---|----|---|-----------|---|--------|---|--------|--|--| | Activit y | Title of
Activity | No . | Clientel
e | n
(Days) | On/Of
f | SC | | ST | | Othe
r | | Total | | ıl | | | | | | | | | | M | F | M | F | M | F | M | F | T | | | | Trainin
g | Panama
wilt
manageme
nt | 1 | Farmers
& farm
women | 1 | OFF | 1 0 | 2 | 5 | 0 | 1 0 | 3 | 2 5 | 5 | 3 0 | | | | Field
Day | Field day
on Panama
wilt
manageme
nt | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1
5 | | | **Crop** : Blackgram Thrust Area : Promotion of pulse based cropping system through quality seed production **Thematic Area** : Seed treatment **Season** : Kharif **Farming** : Irrigated up and mid land based farming situation Situation | | | | | | | ost of | D \ | No. of farmers /
demonstration | | | | | | | | | | |------------|---|--------------------------------|---|---|---|-----------|------------|-----------------------------------|---|----|---|-----------|---|-------|---|-----|--| | | Crop
& | Prop
osed | Technolo
gy | er
(Data)
in | Cultiva | ation (| Ks.) | SC | | ST | | Oth
er | | Total | | ıl | | | Sl.
No. | variety / Enterp rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Name
of
Input
s | De
mo | Lo
cal | M | F | M | F | M | F | M | F | T | | | 1 | Blackgr
am (PU
31, IPU-
02-43) | 5.0 ha | Seed
treatment
with
biofertiliz
er and
foliar
spray | Yield,
germinati
on %,
seed
vigour,
Net
Return,
B:C
Ratio | bioferti
lizer
and
12:61:
0 | 292
50 | 285
00 | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4 0 | 0 | 4 0 | | | | Title of | | Clientel | Duratio | Venue | No. of Participants | | | | | | | | | | | |----------------|---|-----|----------------------------|-------------|----------|---------------------|---|----|---|-------|---|--------|---|-----|--|--| | Activity | Activity | No. | e | n (Days) | On/Off | SC | | ST | | Other | | Total | | 1 | | | | | 11001 / 100 | | , | 12 (2 4) 5) | 012, 011 | M | F | M | F | M | F | M | F | T | | | | Trainin
g | Seed Production of Blackgram with application of Biofertilizer and foliar spray | 1 | Farmers
& farm
women | 1 | OFF | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4 0 | 0 | 4 0 | | | | Field
Day | Field day
on Seed
Production
of
Blackgram | 1 | Farmers
& farm
women | 1 | OFF | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4 0 | 0 | 4 0 | | | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4
0 | 0 | 4 0 | | | Crop : Lentil Thrust Area : Promotion of pulse based cropping system through quality seed production Thematic Area : Seed treatment Season : Rabi **Farming Situation** : Irrigated up and mid land based farming situation | | | Propo | Technolo | Paramet
er (Data) | Cost of Cultivation (Rs.) | | | | No. of farmers / demonstration | | | | | | | | | |------------|-------------------------|------------------------|---|---|--|-----------|-----------|-----|--------------------------------|---|---|-----------|---|-------|---|-----|--| | Sl.
No. | Crop & variety | sed
Area | gy
package | in
relation | | | | | SC | | Т | Othe
r | | Total | | ıl | | | | Enterp
rises | (ha)/
Unit
(No.) | (ha)/ for technolo Name of De Loc
Unit demonstr ov Inputs mo al | Loc
al | M | F | M | F | M | F | M | F | Т | | | | | | 1 | Lentil
(Moitre
e) | 5.0 ha | Seed
treatment
with
biofertiliz
er and
foliar
spray | Yield,
germinati
on %,
seed
vigour,
Net
Return,
B:C
Ratio | biofertili
zer and
micronut
rient | 292
50 | 285
00 | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4 0 | 0 | 4 0 | | | | | | | Duratio
n (Days) | Venue
On/Of
f | No. of Participants | | | | | | | | | | | | |----------------|--|------|----------------------------|---------------------|---------------------|---------------------|---|----|---|-----------|---|-------|---|-----|--|--|--| | Activit
y | Title of Activity | No · | Clientel
e | | | SC | | ST | | Othe
r | | Total | | | | | | | | | | | | | M | F | M | F | M | F | M | F | T | | | | | Training | Seed Production of Blackgram with application of Biofertilize r and foliar spray | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 4 0 | | | | | Field
Day | Field day
on Seed
Productio
n of
Blackgra
m | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 4 0 | | | | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 4 0 | | | | Crop Green gram Thrust Area Promotion of pulse based cropping system through quality seed production Thematic Area Seed treatment Summer Season **Farming Situation** Irrigated up and mid land based farming situation | | | | | Parame
ter | Coltiva | ost of
ation (| Rs.) | | | | | far | | | | | |------------|-------------------------------|--------------------------------|---|---|---|-------------------|-----------|-----|---|----|---|---------|----|-----|------|-----| | | Crop
& | Prop osed | Technol ogy | (Data)
in | | | | S | С | S' | | Ot
e | th | | `ota | ıl | | Sl.
No. | variety / Enterp rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Name
of
Inputs | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Green
gram
(Samra
t) | 5.0 ha | Seed
treatment
with
biofertili
zer and
foliar
spray | Yield,
germinat
ion %,
seed
vigour,
Net
Return,
B:C
Ratio | biofert
ilizer
and
12:61:
0 | 292
50 | 285
00 | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4 0 | 0 | 4 0 | | | Title of | | | Duration | Venue | | | No | . of | Parti | cipa | nts | | | |----------------|---|-----|----------------------------|----------|--------|----|---|----|------|-------|------|-----|------|----| | Activity | Activity | No. | Clientele | (Days) | On/Off | S | С | S | Г | Oth | ier | 7 | Γota | 1 | | | riculty | | | (Days) | | M | F | M | F | M | F | M | F | T | | Training | Seed Production of Blackgram with application of Biofertilizer and foliar spray | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 40 | | Field
Day | Field day on Seed Production of Blackgram | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 40 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 40 | **Crop** : Sesame Thrust Area : Promotion of oil based cropping system through quality seed production **Thematic Area** : Seed treatment **Season** : Summer **Farming Situation** : Irrigated up and mid land based farming situation | | Crop & |
Propo sed | Technolo | Paramet
er (Data)
in | | Cost of
ltivati
(Rs.) | | | | | | farı
nstr | | | | | |------------|---------------------|---------------|---|---|---|-----------------------------|-----------|-----|---|---|---|--------------|---|-----|-----|-----| | Sl.
No. | variety | Area (ha)/ | gy
package
for | relation
to | Na | | | S | С | S | Т | Ot
e: | | T | ota | al | | 140. | Enterp
rises | Unit
(No.) | demonstr
ation | technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Sesame
(Savitri) | 5.0 ha | Seed
treatment
with
chemicals
and foliar
spray | Yield, germinati on %, seed vigour, Net Return, B:C Ratio | PPC
and
12:6
1:0
and
Sulp
hur | 292
50 | 285
00 | 2 5 | 0 | 0 | 0 | 1 5 | 0 | 4 0 | 0 | 4 0 | | | Title of | | | Duration | Venue | | | No | . of | Parti | cipa | nts | | | |----------------|---|-----|----------------------------|----------|--------|----|---|----|------|-------|------|-----|------|----| | Activity | Activity | No. | Clientele | (Days) | On/Off | S | С | S' | Г | Oth | ier | ŗ | Γota | ıl | | | 110011109 | | | (Days) | | M | F | M | F | M | F | M | F | T | | Training | Seed Production of Blackgram with application of Biofertilizer and foliar spray | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 40 | | Field
Day | Field day on
Seed
Production of
Blackgram | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 40 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 25 | 0 | 0 | 0 | 15 | 0 | 40 | 0 | 40 | Crop Jute Promotion of retting process of Jute Crop production Thrust Area Thematic Area Pre-kharif Season Irrigated up and mid land based farming situation **Farming Situation** | | | | | Paramet
er | Cultiv | Cost of ation (| | | | | | farı
nstr | | | | | |------------|------------------------|--------------------------------|--|--|---------------------------|-----------------|-----------|---|---|---|---|--------------|---|-----|------|-----| | | Crop & | Prop
osed | Technolo gy | (Data)
in | | | | S | С | S | Г | Ot
en | | T | `ota | ıl | | Sl.
No. | variety / Enterp rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Nam
e of
Inpu
ts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Jute | 2.0 ha | Improve
d retting
process
of Jute
using
NINFET
Sathi | Yield of
fibre | NIN
FET
Sathi | 460
00 | 450
00 | 7 | 1 | 4 | 2 | 5 | 1 | 1 6 | 4 | 2 0 | | | | | | Duratio | Venue | | | No. | of l | Parti | cipa | ants | | | |----------------|-------------------------------------|------|----------------------------|-------------|------------|-----|---|-----|------|-------|------|--------|-------------|-----| | Activit
y | Title of Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S' | Г | Ot | |] | Cota | ıl | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Cultivatio
n practice
of Jute | 1 | Farmers
& farm
women | 1 | OFF | 1 0 | 2 | 5 | 0 | 1 0 | 3 | 2 5 | 5 | 3 0 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1 5 | **Crop** : Sesame Thrust Area : Judicious application of nutrients Thematic Area : Integrated nutrient management Season : Summer **Farming Situation** : Irrigated up and mid land based farming situation | | | Duone | Technolo | Paramet
er (Data) | | Cost of vation | | | | | | farı
nstr | | | | | |---------|-----------------|------------------------|--------------------------------------|--|------------------------|----------------|-----------|---|---|---|---|--------------|---|-----|-----|-----| | Sl | Crop & variety | Propo
sed
Area | gy
package | in
relation | Na | | | S | С | S | Γ | Ot
ei | | 1 | ota | ıl | | N
o. | Enterp
rises | (ha)/
Unit
(No.) | for
demonstr
ation | to
technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Loc
al | M | F | M | F | M | F | M | F | Т | | 1 | Sesame | 2.0 ha | Spraying with micronutr ient (Boron) | Yield | Bor
on | 340
00 | 320
00 | 5 | 2 | 1 | 0 | 1 2 | 0 | 1 8 | 1 | 2 0 | | | | | | Duratio | Venue | | | No. | of I | Parti | cipa | ants | | | |----------------|---|------|----------------------------|-------------|------------|-----|---|-----|------|-------|------|--------|-----|-----| | Activit
y | Title of
Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S | Γ | Ot | | 7 | ota | ıl | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Integrated Nutrient manageme nt in Oil seed crops | 1 | Farmers
& farm
women | 1 | OFF | 1 0 | 2 | 5 | 0 | 1 0 | 3 | 2 5 | 5 | 3 0 | | Field
Day | Application of nutrient | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1
5 | 5 | 2 0 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1 5 | Crop Boro Paddy Thrust Area Judicious application of agro chemical (Herbicide) Crop production: Weed management Thematic Area Season **Farming Situation** Irrigated up and mid land based farming situation | | | | | Paramet
er | Cost of (| Cultiva
Rs.) | tion | | | | | farı
nstr | | | | | |---------|------------------------|--------------------------------|-------------------------------------|--|--|-----------------|-----------|---|---|---|---|--------------|---|-----|------|-----| | Sl | Crop
& | Prop
osed | Technolo gy | (Data)
in | | | | S | С | S | Г | Ot
er | | T | 'ota | ıl | | N
o. | variety / Enterp rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Name
of
Inputs | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Boro
Paddy | 2.0 ha | Spraying
of
herbicide | Yield | Herbici
de
(Pretila
chlor
@ 360
ml/acre | 620
00 | 600
00 | 9 | 1 | 1 | 1 | 4 | 4 | 1 4 | 6 | 2 0 | | | | | | | Venue | | | No. | of l | Parti | cipa | ants | | | |----------------|---------------------------------------|------|----------------------------|---------------------|-------|-----|---|-----|------|-------|------|------|-------------|-----| | Activit
y | Title of Activity | No · | Clientel
e | Duratio
n (Days) | On/Of | S | С | S | Г | Ot | | 7 | Cota | ıl | | | | | | | 1 | M | F | M | F | M | F | M | F | T | | Training | Judiciou
s use of
herbicid
e | 1 | Farmers
& farm
women | 1 | OFF | 1 0 | 2 | 5 | 0 | 1 0 | 3 | 2 5 | 5 | 3 0 | | Field
visit | Field
visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1 1 | 4 | 1 5 | **Crop** : Mustard Thrust Area : Judicious application of pesticide Thematic Area : Integrated pest management Season : Rabi **Farming Situation** : Irrigated up and mid land based farming situation | | Crop
& | Propo
sed | Technolo | Paramet
er
(Data) in | | Cost of
Iltivati
(Rs.) | | | | | | farı
nstr | | | | | |------------|-----------------|---------------|----------------------------|------------------------------------|------------------------|------------------------------|-----------|-----|---|---|---|--------------|---|--------|-----|-----| | Sl.
No. | variety | Area
(ha)/ | gy
package
for | relation
to | Na | | | S | C | S | Γ | Ot
en | | Г | ota | 1 | | 140. | Enterp
rises | Unit
(No.) | demonstr
ation | technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Loc
al | M | F | M | F | M | F | M | F | Т | | 1 | Mustar
d | 2.0 ha | Spraying with biopesticide | Yield | Nee
m
oil | 330
00 | 310
00 | 1 3 | 2 | 0 | 0 | 4 | 1 | 1
7 | 3 | 2 0 | | | | | | Duratio | Venue | | | No. | of I | Parti | cipa | ants | | | |----------------|--------------------------------------|------|----------------------------|-------------|------------|---|---|-----|------|-------|------|--------|------|-----| | Activit
y | Title of
Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S | Γ | Ot | | 7 | Tota | ıl | | | | | | (Days) | • | M | F | M | F | M | F | M | F | T | | Trainin
g | Pest
manageme
nt of
mustard | 1 | Farmers
& farm
women | 1 | OFF | 5 | 2 | 5 | 0 | 5 | 3 | 1 5 | 5 | 3 0 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1 5 | | Field
Day | Preparation of spray solution | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1
5 | 5 | 2 0 | **Crop** : Paddy Thrust Area : Judicious application of nitrogenous fertilizer Thematic Area : Integrated nutrient management **Season** : All season **Farming Situation** : Irrigated up and mid land based farming situation | | Crop
& | Propo sed | Technolo | Paramet
er (Data)
in | | Cost of
Itivati
(Rs.) | | | | | | farı
nstr | | | | | |------------|-----------------|------------|-------------------------|---|------------------|-----------------------------|-----------|-----|---|---|---|--------------
---|-----|-----|-----| | Sl.
No. | variety / | Area (ha)/ | gy
package
for | relation
to | Na
me | | | S | С | S | Г | Ot
en | | T | ota | ıl | | 110. | Enterp
rises | Unit (No.) | demonstr
ation | technolo
gy
demonst
rated | of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Paddy | 30 | Leaf
Colour
Chart | Yield and decrease in amount of nitrogeno us fertilizer | LC
C | 450
0 | - | 1 0 | 2 | 0 | 0 | 1 5 | 3 | 2 5 | 5 | 3 0 | | | | | | | Venue | | | No. | of | Part | icip | ants | | | |----------------|---|------|----------------------------|---------------------|------------|-----|---|-----|----|------|------|--------|------|-----| | Activit
y | Title of Activity | No · | Clientel
e | Duratio
n (Days) | On/Of
f | S | С | S' | Т | Ot | | ŗ | Γota | l | | | | | | | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Tool for increasin g Nitrogen Use Efficienc | 2 | Farmers
& farm
women | 1 | OFF | 3 0 | 2 | 2 | 0 | 1 8 | 8 | 5 0 | 1 0 | 6 0 | | Field
Day | Use of
LCC in
paddy | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1
5 | 5 | 2 0 | | Field
visit | Field
visit | 2 | Farmers
& farm
women | 1 | OFF | 8 | 2 | 4 | 2 | 1 0 | 4 | 2 2 | 8 | 3 0 | Crop : All Thrust Area : Judicious application of nutrients Thematic Area : Integrated nutrient management **Season** : All season **Farming Situation** : Irrigated up and mid land based farming situation | | | | | Paramet
er | Cultiv | Cost of vation | | No | . of | farı | ner | ·s / c | lem | onst | rati | on | |------------|---------------------------------|--------------------------------|-------------------------------------|---|----------------------------|--------------------|-----------|-----|------|------|-----|--------|----------|------|------|-----| | | Crop
& | Prop
osed | Technol ogy | (Data)
in | | | | S | С | S | Γ | | the
r | 7 | Γota | ıl | | Sl.
No. | variety
/
Enterp
rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Nam
e of
Inpu
ts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | T | | 1 | All | 10
units | Composti
ng
technique
s | Yield
and %
decrease
in use of
fertilizer | Nov
com
solut
ion | 600
per
unit | - | 4 0 | 1 0 | 0 | 0 | 3 0 | 1 0 | 7 0 | 2 0 | 9 0 | | | | | | Duratio | Venue | | | No. | of | Part | icip | ants | | | |----------------|--|------|----------------------------|-------------|------------|-----|---|-----|----|------|------|------|------|-----| | Activit
y | Title of Activity | No . | Clientel
e | n
(Days) | On/Of
f | S | С | S' | Г | Ot | | 7 | Γota | l | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Preparatio
n of
compost
heap and
organic
inputs | 2 | Farmers
& farm
women | 1 | OFF | 3 0 | 2 | 2 | 0 | 1 8 | 8 | 5 0 | 1 0 | 6 0 | | Field
Day | Preparatio
n of
compost
heap and
organic
inputs | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | Field
visit | Field visit | 2 | Farmers
& farm
women | 1 | OFF | 8 | 2 | 4 | 2 | 1 0 | 4 | 2 2 | 8 | 3 0 | **Crop** : Kharif Paddy Thrust Area : Improvement of soil health Thematic Area : Integrated nutrient management **Season** : Kharif Farming Situation : Irrigated farming situation | | | | | Paramet
er | C
Cultiv | ost of | | | | | | farı
nstr | | | | | |------------|---------------------------------|--------------------------------|-------------------------------------|--|---------------------------|-----------|-----------|-----|---|-----|---|--------------|---|-----|-----|-----| | | Crop
& | Prop osed | Technolo gy | (Data)
in | Cuttiv | ation | | S | C | S'. | | Ot | h | | ota | ıl | | Sl.
No. | variety
/
Enterp
rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Nam
e of
Input
s | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | Kharif
paddy | 2.0 | Green
manuring | Yield
and soil
propertie
s | Dhai
ncha
seed | 920
00 | 900 | 1 0 | 2 | 0 | 0 | 1 5 | 3 | 2 5 | 5 | 3 0 | | | Title of | | | | Venue | | | No. | of | Part | icip | ants | | | |----------------|--|------|----------------------------|---------------------|------------|-----|---|-----|----|--------|------|------|------|-----| | Activit y | Activit | No · | Clientel
e | Duratio
n (Days) | On/Of
f | S | С | S' | Г | Ot | | r | Γota | l | | | J | | | | • | M | F | M | F | M | F | M | F | T | | Training | Effect of green manurin g on soil health | 2 | Farmers
& farm
women | 1 | OFF | 3 0 | 2 | 2 | 0 | 1 8 | 8 | 5 | 1 0 | 6 0 | | Field
Day | Process
of green
manurin
g | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | Field
visit | Field
visit | 2 | Farmers
& farm
women | 1 | OFF | 8 | 2 | 4 | 2 | 1
0 | 4 | 2 2 | 8 | 3 0 | **Crop** : Paddy Thrust Area : Judicious application of nutrients Thematic Area : Integrated nutrient management Season : Rabi **Farming Situation** : Irrigated up and mid land based farming situation | | | Propo | Technolo | Paramet er (Data) | | Cost of vation | | | | | | farı
nstr | | | | | |---------|-----------------|------------------------|------------------------------|--|------------------------|----------------|-----------|-----|---|---|---|--------------|---|---|-----|-----| | Sl | Crop & variety | sed
Area | gy
package | in
relation | Na | | | S | С | S | Г | Ot
ei | | Т | ota | ıl | | N
o. | Enterp
rises | (ha)/
Unit
(No.) | for
demonstr
ation | to
technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Loc
al | M | F | M | F | M | F | M | F | Т | | | Paddy | 6.0 ha | Spraying with micronutr ient | Yield | Zinc | 500
00 | 450
00 | 2 5 | 1 | 3 | 1 | 1 8 | 2 | 4 | 4 | 5 0 | | | | | | Duratio | Venue | | | No. | of l | Parti | icipa | ants | | | |----------------|---|------|----------------------------|-------------|------------|-----|---|-----|------|-------|-------|--------|-----|--------| | Activit
y | Title of
Activity | No · | Clientel
e | n
(Days) | On/Of
f | S | С | S | Г | Ot | | 7 | ota | 1 | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Integrated Nutrient manageme nt for Paddy | 1 | Farmers
& farm
women | 1 | OFF | 2 8 | 2 | 5 | 1 | 2 2 | 3 | 5
5 | 5 | 6 0 | | Field
Day | Integrated Nutrient manageme nt for Paddy | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | Field
visit | Field visit | 1 | Farmers
& farm
women | 1 | OFF | 4 | 1 | 2 | 1 | 5 | 2 | 1
1 | 4 | 1
5 | Crop : All Thrust Area : Use of biological inputs Thematic Area : Integrated nutrient and pest management **Season** : All season **Farming Situation** : Irrigated up and mid land based farming situation | | | | | Parame
ter | Cost of C | Cultiva
Rs.) | ation | | | | | far
nsti | | | | | |------------|------------------------|--------------------------------|---|--|--|-----------------|-----------|-----|---|---|---|-------------|---|-----|-------------|-----| | | Crop
& | Prop osed | Technol ogy | (Data)
in | | | | S | С | S | Т | O | | 1 | Cota | ıl | | Sl.
No. | variety / Enterp rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Name
of
Inputs | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 | All | 10
units | Microbia l consortiu m (Waste Decomp oser) | Soil
health
and
yield of
crop | Plastic
drum,
jaggery
, Waste
Decom
poser | 100
00 | - | 1 0 | 2 | 0 | 0 | 1 5 | 3 | 2 5 | 5 | 3 0 | | | | | | Duratio | Venue | | | No. | of 1 | Part | icip | ants | | | |----------------|---|---------|----------------------------|-------------|------------|-----|---|-----|------|--------|------|------|-------------|-----| | Activit
y | Title of Activity | No
· | Clientel
e | n
(Days) | On/Of
f | S | С | S' | Γ | Ot | | 7 | Fota | l | | | | | | (Days) | 1 | M | F | M | F | M | F | M | F | T | | Trainin
g | Waste
decompos
er solution
and its use | 2 | Farmers
& farm
women | 1 | OFF | 3 0 | 2 | 2 | 0 | 1 8 | 8 | 5 0 | 1 0 | 6 0 | | Field
Day | Preparatio
n of waste
decompos
er | 1 | Farmers
& farm
women | 1 | OFF | 5 | 1 | 2 | 1 | 8 | 3 | 1 5 | 5 | 2 0 | | Field
visit | Field visit | 2 | Farmers
& farm
women | 1 | OFF | 8 | 2 | 4 | 2 | 1
0 | 4 | 2 2 | 8 | 3 0 | **Crop** : Toamto Thrust Area : Promotion of improved varieties in vegetable crops Thematic Area : Horticulture **Season** : Rabi **Farming Situation** : Irrigated | | | | | Paramet
er | C
Cultiv | ost of
ation (| | | | | | farı
nstr | | | | | |------------|---------------------------------|--------------------------------|---|--|---------------------------|-------------------|-----------|-----|---|---|---|--------------|---|-----|-----|-----| | | Crop
& | Prop osed | Technolo
gy |
(Data)
in | | | | S | С | S | Г | Ot
e | | Т | ota | ıl | | Sl.
No. | variety
/
Enterp
rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Nam
e of
Input
s | De
mo | Lo
cal | M | F | M | F | M | F | M | F | T | | | Tomato | 2.0 ha | Improved productio n technolog y with variety 'Arka Samrat' | No. of
fruits per
plant and
yield | Seedl
ings | 2,0
00 | | 1 0 | 0 | 5 | 0 | 1 5 | 0 | 3 0 | 0 | 3 0 | | | Title of | | | | Venue | | | No. | of 1 | Parti | cipa | nts | | | |----------|----------------|-----|-----------|----------|--------------|----|---|-----|------|-------|------|-----|------|----| | Activity | Activity | No. | Clientele | Duration | On/Off | S | С | S | Γ | Oth | ier |] | Γota | ıl | | | ricuvity | | | | | M | F | M | F | M | F | M | F | T | | 1. | Training | 2 | Farmers | 1 hr | 1ON
1 OFF | 15 | 0 | 10 | 0 | 35 | 0 | 60 | 0 | 60 | | 2. | Field
Day | 1 | Farmers | 2 hr | OFF | 5 | 0 | 5 | 0 | 10 | 0 | 20 | 0 | 20 | | 3. | Field
visit | 1 | Farmers | 2 hr | OFF | 5 | 0 | 5 | 0 | 10 | 0 | 20 | 0 | 20 | **Crop** : Bitter gourd Thrust Area : Promotion of improved varieties in vegetable crops Thematic Area:HorticultureSeason:SummerFarming Situation:Irrigated | | Crop | Prop | Technolo | Paramet
er
(Data) | | Cost of
Iltivation (Rs.) | | | | | | farı
nstr | | | | | |-------|----------------------|------------------------|--|--|------------------------|-----------------------------|-----------|---|---|---|---|--------------|---|-----|-----|-----| | Sl. | &
variety | osed
Area | gy
package | in
relation | Na | | | S | С | S | Г | Ot
ei | | T | ota | ıl | | No. | /
Enterp
rises | (ha)/
Unit
(No.) | for
demonst
ration | to
technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | 1 0 . | Bitter
gourd | 1.0 ha | Improved productio n technolog y with variety 'Meghna d-2' | No. of
fruits per
plant and
yield | See
d | 12,0
00 | -1 | 5 | 0 | 5 | 0 | 1 0 | 0 | 2 0 | 0 | 2 0 | | | Title of | | | | Venue | | | No | of | Parti | cipa | nts | | | |----------|----------------|-----|-----------|----------|--------------|----|---|----|----|-------|------|-----|------|----| | Activity | Activity | No. | Clientele | Duration | On/Off | S | С | S | Γ | Oth | ier | 7 | Γota | ıl | | | Activity | | | | Oll/Oll | M | F | M | F | M | F | M | F | T | | 1. | Training | 2 | Farmers | 1 hr | 1ON
1 OFF | 10 | 0 | 5 | 0 | 25 | 0 | 40 | 0 | 60 | | 2. | Field
Day | 1 | Farmers | 2 hr | OFF | 5 | 0 | 5 | 0 | 10 | 0 | 20 | 0 | 20 | | 3. | Field
visit | 1 | Farmers | 2 hr | OFF | 5 | 0 | 5 | 0 | 10 | 0 | 20 | 0 | 20 | FLD-20 | 1 110 110 | | |--------------------|---| | Crop: | Vegetables (Solanaceous and cole crops) | | Thrust Area: | Quality seedling/planting material | | Thematic Area: | Nursery raising: Seedling raising in plug tray | | Season: | Kharif | | Farming Situation: | Irrigated up and mid land based farming situation | | SI | Crop & | Prop | Technolo | Paramet
er
(Data) in | | Cost of
Iltivati
(Rs.) | | No | o. of | far | mei | rs / c | lem | onst | ratio | on | |----|---|---------------------------|-------------------------------------|------------------------------------|------------------|------------------------------|-----------|----|-------|-----|-----|--------|---------|------|-------|-----| | · | variety
/ | osed
Area
(ha)/ | gy
package
for | relation
to | Na
me | | | S | C | S | Г | Ot | he
' |] | Γota | 1 | | 0. | o. Enterpr | Unit
(No.) | demonst
ration | technolo
gy
demonst
rated | of
Inp
uts | De
mo | Lo
cal | M | F | M | F | M | F | M | F | Т | | | Vegetab les (Solana ceous and cole crops) | unit of 10,00 0 capasi ty | Seedling
raising in
plug tray | No. of healthy seedlings | Plu
g
tray | 100 00 | | 5 | 1 0 | - | 5 | 1 0 | 4 0 | 1 5 | 5 5 | 7 0 | | Activit | Title of | No | Clientel | Duratio | Venue | | | No | . of | Part | icipa | nts | | | |---------|----------|----|----------|---------|-------|---|---|----|------|------|-------|-----|------|---| | | Activity | | e | n | On/Of | S | C | S | Γ | Otl | her | , | Tota | l | | y | Activity | • | | | f | M | F | M | F | M | F | M | F | T | | 1. | Trainin | 2 | Farmers | 1 hr | 10N | - | 1 | | 5 | 1 | 4 | 1 | 5 | 7 | | 1, | g | 2 | Taimers | 1 111 | 1 OFF | 5 | 0 | - | 3 | 0 | 0 | 5 | 5 | 0 | | 2. | Field | 1 | Formore | 2 hr | OFF | 1 | 4 | | 3 | 0 | 1 | 0 | 1 | 2 | | ۷. | Day | 1 | Farmers | 2 III | OFF | 1 | 4 | - | 3 | 2 | 0 | 3 | 7 | 0 | | 2 | Field | 1 | Боттона | 2 hr | OFF | 1 | 4 | | 3 | 0 | 1 | 0 | 1 | 2 | | 3. | visit | 1 | Farmers | ∠ nr | OFF | 1 | 4 | - | 3 | 2 | 0 | 3 | 7 | 0 | **Crop** : Mango Thrust Area : Promotion of improved production technology of fruit crops Thematic Area : Horticulture **Season** : Rabi **Farming Situation** : Irrigated | | | | | Paramet
er | C
Cultiv | Cost of
ation | | | | | | far
nstr | | | | | |------------|---------------------------------|--------------------------------|---|--|---|------------------|-----------|---|---|---|---|-------------|---|-----|-----|-----| | | Crop
& | Prop
osed | Technolo gy | (Data)
in | | | | S | С | S | Т | Ot
e | | T | ota | ıl | | Sl.
No. | variety
/
Enterp
rises | Area
(ha)/
Unit
(No.) | package
for
demonst
ration | relation
to
technolo
gy
demonst
rated | Nam
e of
Inpu
ts | De
mo | Lo
cal | M | F | M | F | М | F | M | F | Т | | 1 2 . | | 1.0 ha | Improved productio n technolog y with use of Mango Special and Planofix | Fruit
weight
and yield | Man
go
Spec
ial
and
Plan
ofix | 150
00 | | 5 | 0 | 5 | 0 | 1 0 | 0 | 2 0 | 0 | 2 0 | | A -4::4 | Title of | NT- | Cli and all | D4: | Venue | Pa | | . of
ipan | ts | | | | | | |----------|----------------|-----|-------------|----------|--------------|----|---|--------------|----|-----|-----|----|-----|----| | Activity | Activity | No. | Clientele | Duration | On/Off | S | С | S | Γ | Oth | ier | To | tal | | | | | | | | | M | F | M | F | M | F | M | F | T | | 1. | Training | 2 | Farmers | 1 hr | 1ON
1 OFF | 20 | 0 | 10 | 0 | 30 | 0 | 60 | 0 | 60 | | 2. | Field
Day | 1 | Farmers | 2 hr | OFF | 5 | 0 | 5 | 0 | 10 | 0 | 20 | 0 | 20 | | 3. | Field
visit | 1 | Farmers | 2 hr | OFF | 5 | 0 | 5 | 0 | 10 | 0 | 20 | 0 | 20 | FLD-22 | Crop: | Banana | |--------------------|--| | Thrust Area: | Cultivation of good quality fruits | | Thematic Area: | Value addition: Banana bunch cover (polypropelene) | | Season: | Pre & Post Monsoon. | | Farming Situation: | Irrigated up and mid land based farming situation. | | | | Propo | Technolo | Paramet
er (Data) | | Cost of vation | | | | | | farı
nstr | | | | | |---------|-----------------|------------------------|--|---|------------------------|----------------|-----------|---|---|---|---|--------------|---|---|------|----| | Sl | Crop & variety | sed
Area | gy
package | in
relation | Na | | | S | С | S | Т | Ot
e: | | T | `ota | ıl | | N
o. | Enterp
rises | (ha)/
Unit
(No.) | for
demonstr
ation | to
technolo
gy
demonst
rated | me
of
Inp
uts | De
mo | Loc
al | M | F | M | F | M | F | M | F | Т | | | Banana | 1 ha | Banana
bunch
cover
(polyprop
elene) for
quality
finger | % of scar
& length-
breath
ratio | Bun
ch
cove
r | 100
00 | 1 | 2 | 1 | 1 | 1 | 5 | 0 | 7 | 1 | 7 | | | Title of | | | | Venue | | | No | . of | Part | icipa | ants | | | |----------|----------|-----|-----------|----------|--------|---|---|----|------|------|-------|------|------|----| | Activity | Activity | No. | Clientele | Duration | On/Off | S | С | S | Γ | Oth | ier | , | Tota | l | | | ricuvity | | | | | M | F | M | F | M | F | M | F | T | | 1. | Training | 1 | Farmers | 1 hr | 1 OFF | 2 | ı | ı | ı | 5 | 0 | 7 | ı | 7 | | 2. | Field | 1 | Farmers | 2 hr | OFF | 4 | 1 | 3 | - | 10 | 2 | 17 | 03 | 20 | | | Day | | | | | | | | | | | | | | | 3. | Field | 1 | Farmers | 2 hr | OFF | 4 | 1 | 3 | _ | 10 | 2 | 17 | 03 | 20 | | J. | visit | _ | | _ 111 | | | | | | | _ | -, | | _0 | ## (a) Seed and planting material production by utilization of instructional farm (Crops / Enterprises): | Name of the | Variety / | Period | Area (ha.) | Details of Pro | oduction | | | | |----------------------|------------------------|------------------------------|------------|--------------------|--------------------------------------|----------------------|--------------------------------------|---------------------------------| | Crop /
Enterprise | Туре | Fromto | | Type of Produce | Expected
Production
(quintals) | Cost of inputs (Rs.) | Expected
Gross
income
(Rs.) | Expected
Net Income
(Rs.) | | Elephant
Foot yam | Bidhan
Kusum | April to November – December | 0.33 | Seed tuber | 70 | 50,000.00 | 2,10,000.00 | 1,60,000.00 | | Sesame | Sabitri | March - June | 0.4 | Seed | 3 | 8,000.00 | 15,000.00 | 7,000.00 | | Green gram | Virat | March - June | 0.13 | Seed | 1.5 | 4000.00 | 6750.00 | 2750.00 | | Summer vegetables | Different crops | February to
March | 0.13 | Planting materials | 20,000 nos | 10,000.00 | 25,000.00 | 15,000.00 | | Mango |
Himsagar,
Amrapalli | June - August | 0.07 | Planting materials | 2000 nos | 25,000.00 | 80,000.00 | 55,000.00 | | Aman Paddy | IET 4786 | June –
November | 0.4 | Seed | 2 | 18,000.00 | 24,000.00 | 6,000.00 | | Kharif onion | Agrifound
Dark Red | July -
November | 0.13 | Planting materials | 60,000 nos | 8,000.00 | 19,000.00 | 11,000.00 | | Lentil | Moitree | November | 0.13 | Seed | 1.2 | 4000.00 | 5,400.00 | 1400.00 | | Winter vegetables | Different crops | October -
March | 0.2 | Planting materials | 25,000 nos | 11,000.00 | 35,000.00 | 24,000.00 | | Flower crops | Different crops | July -
November | 0.07 | Planting materials | 10,000 nos | 5000.00 | 10,000.00 | 5,000.00 | ## (b) Village Seed Production Programme: | Name of | | | | | | Details | of Prod | luction | | |---------------------------------|-----------------------|----------------------|----------------------|-----------------|---------------------------|------------------------------------|-----------------------|--|---| | the
Crop /
Enterpr
ise | Varie
ty /
Type | Period
From
to | Are
a
(ha
) | No. of farme rs | Type
of
Produ
ce | Expecte
d
Producti
on (q) | Cost of inpu ts (Rs.) | Expect
ed
Gross
income
(Rs.) | Expect
ed
Net
Incom
e (Rs.) | | Paddy | IET-
4786 | June-Nov,
2022 | 13.
3 | 100 | Seed | 480.0 | | | | | Lentil | PL-
4717 | Nov,22-
Mar-23 | 5.0 | 40 | Seed | 60.0 | | | | | Blackgr
am | PU-
31 | Aug-Nov,
2022 | 5.0 | 40 | Seed | 50.0 | 1 | 1 | | | Greengr
am | Virat | Feb-May,
2022 | 5.0 | 40 | Seed | 50.0 | - | | | | Sesame | Savitr
i | Feb-May,
2022 | 5.0 | 40 | Seed | 60.0 | | | | ## 5. Extension Activities: | Notana of Entancian | No. of | | F | 'armer | rs | | Extensi
Official | | | Total | | |--|------------|-----|-----|--------|--------------------------|------|---------------------|-------|------|--------|-------| | Nature of Extension
Activity | activities | M | F | T | SC/ST
(% of
total) | Male | Female | Total | Male | Female | Total | | Field Day | 2 | 57 | 18 | 75 | 24 | 2 | 1 | 3 | 59 | 19 | 78 | | KisanMela | 2 | 380 | 20 | 400 | 32 | 13 | 7 | 20 | 393 | 27 | 420 | | KisanGhosthi | | | | | | | | | | | | | Exhibition | 1 | 718 | 150 | 868 | 22 | | | | 718 | 150 | 868 | | Film Show | 1 | 42 | 6 | 48 | 14 | 4 | 3 | 7 | 46 | 9 | 55 | | Method
Demonstrations | 2 | 7 | 3 | 10 | 70 | 0 | 0 | 0 | 7 | 3 | 10 | | Farmers Seminar | 5 | 356 | 156 | 512 | 62 | | | | 356 | 156 | 512 | | Workshop | | | | | | | | | | | | | Group meetings | 8 | 145 | 28 | 173 | 32 | 14 | 2 | 16 | 159 | 30 | 189 | | Lectures delivered as resource persons | 1 | 15 | 13 | 28 | 20 | 17 | 3 | 20 | 32 | 16 | 48 | | Advisory Services | 4 | 75 | 3 | 78 | 34 | 16 | 3 | 19 | 91 | 6 | 97 | | Scientific visit to farmers field | 21 | 172 | 29 | 201 | 68 | 3 | 2 | 5 | 175 | 31 | 206 | | Farmers visit to KVK | | | | | | | | | | | | | Diagnostic visits | 5 | 280 | 28 | 308 | 64 | 2 | 3 | 5 | 282 | 31 | 313 | | Exposure visits | 1 | 29 | 7 | 36 | 18 | 2 | 0 | 2 | 31 | 7 | 38 | | Ex-trainees Sammelan | 4 | 141 | 16 | 157 | 25 | 2 | 3 | 5 | 143 | 19 | 162 | |---|-----|------|-----|------|-----|-----|----|-----|------|-----|------| | Soil health Camp | 1 | 20 | 0 | 20 | 22 | 4 | 1 | 5 | 24 | 1 | 25 | | Animal Health Camp | | | | | | | | | | | | | Agri mobile clinic | | | | | | | | | | | | | Soil test campaigns | 1 | 78 | 22 | 100 | 33 | 2 | 3 | 5 | 80 | 25 | 105 | | Farm Science Club
Conveners meet | | | | | | | | | | | | | Self Help Group | | | | | | | | | | | | | Conveners meetings MahilaMandals | | | | | | | | | | | | | Conveners meetings | | | | | | | | | | | | | Celebration of important days (specify) | 3 | 189 | 64 | 253 | 45 | 7 | 2 | 9 | 196 | 66 | 262 | | Sankalp Se Siddhi | | | | | | | | | | | | | Swatchta Hi Sewa | | | | | | | | | | | | | MahilaKisan Divas | | | | | | | | | | | İ | | Any Other (Phone Call) | 38 | 520 | 92 | 612 | 49 | 0 | 0 | 0 | 520 | 92 | 612 | | Total | 100 | 3224 | 655 | 3879 | 634 | 103 | 42 | 145 | 3312 | 688 | 4000 | #### 6. Revolving Fund (in Rs.): | Opening balance of 2022 (As on 01.01.2022) (Un- | Amount proposed to be invested | Expected Return | |---|--------------------------------|-----------------| | audited) | during 2022 | | | 37.79 | 4.50 | 5.00 | ## 8. Expected fund from other sources and its proposed utilization: | Project | Source | Amount to be received (Rs. in lakh) | |---------------------------------|--|-------------------------------------| | Short term
Research | ATMA | 4.50 | | DAESI | Input Dealers through Dept. of Agriculture | 16.00 | | Technology Week/
Kishan Mela | NABARD | NA | #### 9. On-farm trials to be conducted*: | 1 | Season | Rabi | |----|--|---| | 2 | Title of OFT | Evaluation of different spacing of transplanted pot culture seedling of mustard during rabi season | | 3 | Thematic area | Crop production | | 4 | Problem diagnosed | Decreasing productivity of mustard due to broadcasting and late planting. | | 5 | Production system | Paddy-Mustard-Sesame | | 6 | Micro-farming situation | Medium/Low land | | 7 | Technology for testing | Different spacing for transplanted pot culture seedling of mustard | | 8 | Existing practice | Broadcasting | | 9 | Objective | To find out the best planting distance for transplanted mustard | | 10 | Treatments | Farmers' practice: Broadcasting Technology option 1: Pot culture seedling (Spacing – 75 cm X 35 cm) Technology option 2: Pot culture seedling (Spacing – 50 cm X 50 cm) Technology option 3: Pot culture seedling (Spacing – 50 cm X 40 cm) | | 11 | Critical inputs | Seed, pot | | 12 | Unit size | 0.133 ha | | 13 | No. of replication | 7 | | 14 | Unit cost | Rs.1000/- | | 15 | Total cost involved | Rs. 7000/- | | 16 | Monitoring indicator | Yield (t/ha) | | 17 | Source of
Technology (ICAR/
AICRP/SAU/Other) | State Govt. | | 1 | Season | Pre Kharif | |----|--|--| | 2 | Title of OFT | Evaluation of different sowing methods for increasing the productivity of Jute | | 3 | Thematic area | Crop production | | 4 | Problem diagnosed | Decreasing productivity of jute associated with improper sowing methods | | 5 | Production system | Jute-Paddy-Lentil/Mustard | | 6 | Micro-farming situation | Medium land | | 7 | Technology for testing | Different sowing methodologies to enhance the productivity of Jute | | 8 | Existing practice | Broadcasting of jute seed | | 9 | Objective | To evaluate the best sowing method towards increased the productivity of Jute | | 10 | Treatments | Farmers' practice: Improper sowing method (Broadcasting) Technology option 1: Line sowing with tine Technology option 2: Line sowing with seed drill | | 11 | Critical inputs | Jute seed drill | | 12 | Unit size | 0.133 ha | | 13 | No. of replication | 7 | | 14 | Unit cost | Rs.1000/- | | 15 | Total cost involved | Rs. 7000/- | | 16 | Monitoring indicator | Plant height, dry matter, stem girth, disease pest incident, yield | | 17 | Source of
Technology (ICAR/
AICRP/SAU/Other) | BCKV | | OF | Γ3 | | | |------|--------------------------|---|--| | i. | Season | : | Year the round | | ii. | Title of the OFT | : | Weather forecast based climate resilient vegetable production with mixed/staggered planting. | | iii. | Thematic Area | : | Crop Diversification | | iv. | Problem
diagnosed | : | Frequent occurrence of off season and heavy rainfall causing huge loss to vegetable cultivation and subsequent low availability of harvestable produce. | | v. | Important Cause | : | Lack of information about weather based forecast and non-adaptation of climate resilient cultivation methods. | | vi. | Production system | : | Vegetable based (solanaceous/ summer cole crops-cole crops in early kharif-kharif- cole crops in rabi) | | vii | Micro farming system | : | Irrigated medium land | | viii | Technology for Testing | : | Climate resilient cultivation methods | | ix. | Existing Practice | : | Cultivation of F1 hybrids with single day transplanting and non-adaptation of any climate resilient methods. | | X. | Hypothesis | : | Mixed/staggered planting of F1 hybrids with climate resilient measures may be helpful for mitigation of weather hazards and subsequent yield loss. | | xi. | Objective(s) | : | To identify most suitable climate resilient vegetable production methods with mixed/staggered planting. | | xii | Treatments | : | Farmers Practice (FP): Cultivation of F1 hybrids with single day transplanting. Technology option-I (TO-I): Cultivation of F1 hybrids with mixed/staggered planting with double row planting. Technology option-II (TO-II): Cultivation of F1 hybrids with
mixed/staggered planting and formation of micro water-shed based water use/drainage group for management of climate hazards **. Technology option-III (TO-III): Cultivation of F1 hybrids with mixed/staggered planting and in-situ 3-4 ft depth pond excavation (5% model) to accommodate drainage water during heavy rainy days. | | xiii | Critical Inputs | : | Vegetable seeds | | xiv | Unit Size | : | 1333 sq.m. | | XV. | No of
Replications | : | 7 | | xvi | Unit Cost | : | 5000 | | xvi | | : | 35000 | | xvii | Indicator | : | Weather Data, Yield Parameters, BC ratio | | xix | Technology | : | BCKV user group will closely co-ordinate with concerned scientist for weather | ** The water user group will closely co-ordinate with concerned scientist for weather updates (SMS/Whattapp) and co-share the loss of low lying field. | OF | Γ4 | | | |------|---------------------------|---|--| | i. | Season | : | Year the round | | ii. | Title of the OFT | : | Introduction of low cost poly walking tunnel for year round off season cultivation. | | iii. | Thematic
Area | : | Off season / high tech cultivation | | iv. | Problem diagnosed | : | Seasonal glut is causing very low return and results the venture as huge loss. | | V. | Important
Cause | : | Cultivation of same type crop at the same time by the majority of farmers. | | vi. | Production system | : | Vegetable based (Cucurbits-solanaceous-cole crops) | | vii | | : | Irrigated medium land | | viii | Technology
for Testing | : | Off season / high tech cultivation | | ix. | Existing Practice | : | Cultivation of season specific vegetable | | х. | Hypothesis | : | Poly walking tunnel may be helpful for off season vegetable cultivation. | | xi. | Objective(s) | : | To identify most suitable off season crop sequence under poly walking tunnel. | | xii | Treatments | : | Farmers Practice (FP): Rabi: Cole crops(cauliflower)- Summer/kharif: curcurbits (ridge gourd/ pointed gourd) Technology option-I (TO-I): Rabi: Ridge gourd- Summer: cauliflower/cabbage- Kharif: Leafy vegetable Technology option-III (TO-III): Rabi: Pointed gourd- Summer: cauliflower/cabbage- Kharif: Leafy vegetable | | xiii | Critical
Inputs | : | Vegetable seeds | | xiv | Unit Size | : | 200 sq.m. | | XV | No of
Replications | : | 7 | | xvi | | : | 5000 | | xvi | | : | 35000 | | xvii | Indicator | : | Yield, BC ratio | | xix | Source of
Technology | : | BCKV | | 1 | Season | Kharif | |----|---|---| | 2 | Title of OFT | Evaluation of integrated nutrient management practice through use of bio-fertilizer for Kharif paddy | | 3 | Thematic area | Nutrient Management | | 4 | Problem diagnosed | The soils of the area are lacking with organic matter content and the farmers are habituated with such a cultivation practice where there is no or minimum use of any organic inputs in soil. Fertilizers are used randomly without maintaining proper dose. Therefore, the yield of paddy crop is diminishing with deterioration of soil health. | | 5 | Important cause | Indiscriminate and imbalanced fertilizer use without addition of organic inputs in soil. | | 6 | Production system | Paddy-Mustard-Paddy | | 7 | Micro-farming situation | Medium/Low land | | 8 | Technology for testing | Different methodologies to enhance integrated nutrient management | | 9 | Existing practice | Nitrogenous fertilizer, particularly urea is applied in an indiscriminate way, simultaneous application of phosphorus and potassium fertilizers with proper dose haven't been maintained. No organic matter is applied in the fields. | | 10 | Hypothesis | Use of BIO-NPK fertilizer can enhance the soil health condition with higher yield performance. | | 11 | Objective | To evaluate the best option towards increased integrated nutrient management practice for Kharif paddy under rainfed farming situation of New Alluvial Zone, Nadia district. | | 12 | Treatments | Farmers' practice: Imbalanced and indiscriminate nitrogen use Technology option 1: Recommended dose of fertilizer Technology option 2: BIO-NPK liquid bio-fertilizer + 75% of the recommended dose of fertilizer Technology option 3: BIO-NPK liquid bio-fertilizer + 50% of the recommended dose of fertilizer | | 13 | Critical inputs | BIO-NPK liquid bio-fertilizer | | 14 | Unit size | 0.133 ha | | 15 | No. of replication | 5 | | 16 | Unit cost | Rs.1000/- | | 17 | Total cost involved | Rs.5000/- | | 18 | Monitoring indicator | Agronomic traits Yield (t/ha) Soil physic-chemical properties C:B ratio | | 19 | Source of
Technology
(ICAR/ AICRP/
SAU/ Other) | National Bureau of Agriculturally important Micro-organisms, ICAR | | 1 | Season | Rabi | |----|---|--| | 2 | Title of OFT | Evaluation on impact of different microbial consortium on in situ crop residue decomposition | | 3 | Thematic area | Natural Resource Management | | 4 | Problem diagnosed | Timely management of crop residue after harvesting of Kharif paddy is a serious concern for the farmers. They are compelled to burn the stubbles of the paddy crop which creates serious soil health deterioration and environmental hazard. | | 5 | Important cause | Delayed sowing hampers the proper management practices ultimately reducing the crop yield. | | 6 | Production system | Paddy-Mustard-Paddy | | 7 | Micro-farming situation | Medium/Low land | | 8 | Technology for testing | Different microbial consortium | | 9 | Existing practice | Residue burning after Kharif paddy harvesting. | | 10 | Hypothesis | Use of different microbial consortium under optimum soil moisture condition can decompose the crop residue in-situ within a short period of time. | | 11 | Objective | To evaluate the best option towards speedy decomposition of crop residue after harvest. | | 12 | Treatments | Farmers' practice: Burning of crop residues after harvest Technology option 1: Use of waste decomposer solution @500 lt/ha Technology option 2: Use of IARI microbial inoculant @ 3kg/ha along with urea @30kg/ha | | 13 | Critical inputs | Waste decomposer and IARI microbial inoculant | | 14 | Unit size | 0.133 ha | | 15 | No. of replication | 7 | | 16 | Unit cost | Rs.1000/- | | 17 | Total cost involved | Rs.7000/- | | 18 | Monitoring indicator | Time of decomposition Soil physico-chemical and biological properties Labour cost User friendly technology Impact on succeeding crop management | | 19 | Source of
Technology
(ICAR/ AICRP/
SAU/ Other) | National Centre of Organic Farming, Gaziabad and Indian Agricultural Research Institute (ICAR), Pusa, New Delhi. | | 1 | Season | kharif . | |----|--|--| | 2 | Title of OFT | Assessment of efficiency of integrated approach against collar rot of chilli | | 3 | Thrmatic area | Integrated disease management | | 4 | Problem diagnosed | Heavy loss in chilli due to collar rot. | | 5 | Important cause | Chilli is one of the most important crops and this crop is cultivated mainly in pri kharif and rabi season. But it is badly affected by collar rot disease (mainly in rainy seasin) caused by <i>Sclerotium rolfsii</i> . It may cause up to 16-80 % loss of the crop in kharif season. | | 6 | Production system | Vegetable based production system. | | 7 | Micro-farming situation | Irrigated crop | | 8 | Technology for testing | IPM: seed treatment and application of bio pesticide | | 9 | Existing practice | Indiscriminate use of fungicide after appearance of collar rot disease. | | 10 | Hypothesis | Seed treatment removes seed born diseases and helps to grow
healthy seedlings and some bio pesticides controles soil boarn
diseases | | 11 | Objective | To increase crop productivity with the disease control. | | 12 | Treatments | Farmers' practice: Indiscriminate use of fungicide like carbendazim, mancozeb, propiconazole etc. Technology option 1: Deep ploughing during land preparation, Seed treatment with Thiram 75% @ 2.5 g/ Kg of seed, pit filling with organic manute treated with <i>Trichoderma viride</i> and need based application of Chlirothalonil 2 g+ Thiophenate methyl 1 g/l of water Technology option 2: Deep ploughing during land preparation, Seed treatment with Thiram 75% @ 2.5 g/ Kg of seed, pit filling with organic manute treated with <i>Trichoderma harzianum</i> and need based application of Chlirothalonil 2 g+ Thiophenate methyl 1 g/l of water | | 13 | Critical inputs | T.
viride, T. harzianum, Fungicide | | 14 | Unit size | 0.133 | | 15 | No. of replication | 7 | | 16 | Unit cost | Rs. 1000.00 | | 17 | Total cost involved | Rs. 7000.00 | | 18 | Monitoring indicator | Percent disease index (through out the crop season), total production, total income, B:C | | 19 | Source of
Technology (ICAR/
AICRP/ SAU/
Other | BCKV. | | 1 | Season | Kharif | |----|---|--| | 2 | Title of OFT | Assessment of efficiency of some chemicals for management of Downy mildew in cucumber | | 3 | Thematic area | Integrated disease management | | 4 | Problem diagnosed | Heavy loss of yield in cucumber due downy mildew disease infestation. | | 5 | Important cause | Cucumber is a major vegetable of Nadia District, being a profitable crop, a large number of farmers prefer to grow this crop, but they face huge loss due to downy mildew disease. It reduces 15-55% yield and it sometime becomes difficult to manage the infestation. | | 6 | Production system | Vegetable based production system. | | 7 | Micro-farming situation | Irrigated crop | | 8 | Technology for testing | Efficacy of some chemicals. | | 9 | Existing practice | Random use of fungicide like carbendazim, mancozeb etc. | | 10 | Hypothesis | Some fungicide can effectively control the growth and sporulation of the causal organism <i>Peronospora spp</i> . | | 11 | Objective | To increase crop productivity with effective management of the disease. | | 12 | Treatments | Farmers' practice: Indiscriminate use of pesticide fungicide like carbendazim, mancozeb, propiconazole Technology option 1: seedling raising in poly packet under 60 mesh insect proof net, spraying with cymoxanil 8% + Mancozeb 50% @ 2.0 g/L after initiation of infestation. Technology option 2: seedling raising in poly packet under 60 mesh insect proof net, spraying with Azoxystrobin 23% SC @ 1.5ml/L after initiation of infestation. | | 13 | Critical inputs | Fungicide | | 14 | Unit size | 0.133 | | 15 | No. of replication | 7 | | 16 | Unit cost | Rs. 1000.00 | | 17 | Total cost involved | Rs. 7000.00 | | 18 | Monitoring indicator | No. of plant infested in terms of percent disease index (PDI) before and after treatment, total production, total income, B:C | | 19 | Source of
Technology (ICAR/
AICRP/ SAU/ Other | BCKV. | | 1 | Season | Rabi | |----|-------------------------|---| | 2 | Title of OFT | Effect of Mulching, border crops and sea weed extract on seed quality of Chilli (Variety: Bidhan Chilli-4). | | 3 | Thematic area | Seed quality enhancement | | 4 | Problem
diagnosed | Chilli is an often cross pollinated crop, where the extend of cross pollination is upto 7 to 36 %. Farmers save their own seed for OP varieties like Chilli, which are not 100% genetically pure. Minimum isolation distance required for Chilli is 400 m for foundation and hybrid seed and 200 m for certified seed production are necessary. But in Farmers field condition it's very tough to maintain such long isolation. To solve this problem we use 40 mesh sieve net cover for individual plant along with double row Sweet corn border. Seed quality plays an important role in the production of any crops. Characteristics such as 100% genetically pure seeds with high germination percentage, purity, vigor, and appearance are important to farmers. Achieving and maintaining high seed quality is the goal of this simple technical intervention. | | 5 | Production
system | Vegetable based production system | | 6 | Micro-farming situation | Irrigated high/medium land. | | 7 | Technology for testing | Two foliar spray of sea weed extract @ $2ml / l$ of water at 15 DAT and at flower initiation stage. | | 8 | Existing practice | Farmers saved their own seed without any precautionary measure. | | 9 | Objective | Quality seed production | | 10 | Treatments | Farmer Practice : Variety: Bidhan Chilli-4 with normal cultivation practices generally followed by the farmers. Technology option1: 25 micron poly mulch + Crop border + 40 mesh sieve net cover for individual plant (10-15 plants only). Technology option 2: 25 micron poly mulch + Crop border + 40 mesh sieve net cover for individual plant (10-15 plants only) + two foliar spray of sea weed extract @ 2ml / l of water at 15 DAT and at flower initiation stage. For Technology option 1 and Technology option 2: Seed treatment- Carbendazim @ 2g per kg of seed. 450 l of water is required for spraying one hectare of land. In double row Maize border the Maize seed will be sown on the same day of Chilli seed sowing i.e. in 1st week of August. Date of sowing 1st week of August and transplanting 1st week of September. Spacing: 50 cm X 50 cm Seed rate: 300-350 g/ ha Fertilizer: 60:60:60 basal and Water soluble fertilizer (18-18-18) @ 4 g/ l of water at 30-35 DAT and 50-55 DAT. | | | | Sea weed extract @ 2ml / l of water at 15 DAT and at flower initiation stage. | |----|---|--| | | | | | 11 | Critical inputs | Seed, 25 micron poly mulch, 40 mesh sieve net, Sea weed extract. | | 12 | Unit size | 0.133 ha | | 13 | No. of replication | 7 | | 14 | Unit cost | Rs.3,100/- | | 15 | Total cost involved | Rs.21,700.00 | | 16 | Monitoring indicator | Plant height, Fruit/plant, Fruit weight, Seed/fruit, 1000 seed weight, Seed yield, , Seed germination %, Seed vigour, Cost of cultivation, Gross return, Net return, BC ratio. | | 17 | Source of
Technology
(ICAR/
ICRP/SAU/
Other | AICRP on Vegetable Crops, BCKV | **Seaweed extracts:** In biological agriculture and horticulture diluted **extracts** of **seaweed** are applied to promote growth, prevent pests and diseases and improve the quality of the products. The efficacy of the **extracts** is probably based upon plant hormones (mainly cytokinins) and trace nutrients present in the **extracts. Seaweed** contains phosphorous, which helps **plants** develop healthy and strong root systems. Seaweed and seaweed-derived products have been widely used as bio stimulants in crop production due to presence of multiple growth regulators such as cytokinin, auxins, gibberellins, betaines, as well as presence of macronutrients such as Ca, K, P, and micronutrients like Fe, Cu, Zn, B, Mn, Co and Mo, which are necessary for plant growth and development. Numerous studies have revealed a wide range of beneficial effects of seaweed extract on plants, such as early seed germination and establishment, better crop performance and yield, inducing resistance to biotic and abiotic stress and many more. This paper is an effort to review the importance of seaweed extract on germination, production, improvement of nutritional quality of agricultural crops which helps in further study of sea weed in agriculture. | 1 | Season | Rabi | |----|--|--| | 2 | Title of OFT | Performance evaluation of foliar spray of Nutrients at flower initiation stage on Greengram | | 3 | Thematic area | Seed quality enhancement | | 4 | Problem diagnosed | Low productivity of local cultivars during <i>Summer</i> season under irrigated farming situation of high humid New Alluvial Zone, Nadia. Low production potentiality of Greengram is due to neglected cultivation. | | 5 | Production system | Greengram-Vegetables | | 6 | Micro-farming situation | Irrigated high/medium land. | | 7 | Technology for testing | Foliar spray of water soluble fertilizers 18:18:18 @ $2g/l$ of water at flower initiation stage (25-30 DAS) + Micronutrients @ $2g/l$ of water at 35-40 DAS Foliar spray of water soluble
fertilizers 12:61:0 and 13:0:45 both @ $1g/l$ of water at flower initiation stage (total $2g/l$) (25-30 DAS) + Micronutrients @ $2g/l$ of water at 35-40 DAS | | 8 | Existing practice | Local cultivars cultivated during <i>Summer</i> season without any nutrients. | | 9 | Objective | To identify the best possible Management practice for <i>Summer</i> season under irrigated farming situation of high humid New Alluvial Zone, Nadia. | | 10 | Treatments | Farmer Practice: No foliar Spray of Nutrients Technology option1: Foliar spray of water soluble fertilizers 18:18:18 @ 2g/l of water at flower initiation stage (25-30 DAS) + Micronutrients @ 2g/l of water at 35-40 DAS Technology option 2: Foliar spray of water soluble fertilizers 12:61:0 and 13:0:45 both @ 1g/l of water at flower initiation stage (total 2g/l) (25-30 DAS) + Micronutrients @ 2g/l of water at 35-40 DAS For Technology option 1 and Technology option 2: Seed treatment- Inoculation of seed with Rhizobium (Rizobium @ 0.75 kg/22.5 kg of seed requiring for one hectare) PSB (Soil application of PSB with cow dung manure @ 1.9 l/ha during final land perparation) to T-1 & 2 450 l of water is required for spraying one hectare of land | | 11 | Critical inputs | water soluble fertilizers 18:18:18, 12:61:0 and 13:0:45, <i>Rhizobium</i> , PSB, Micronutrients | | 12 | Unit size | 0.133 ha | | 13 | No. of replication | 7 | | 14 | Unit cost | Rs.600/- | | 15 | Total cost involved | Rs.4,200.00 | | 16 | Monitoring indicator | Plant Height, No. of primary branches/plant, Pod/plant, Seed/pod, 1000 seed weight, Seed yield, Cost of cultivation, Gross return, Net return, BC ratio, Seed germination %. | | 17 | Source of
Technology
(ICAR/
ICRP/SAU/ Other | BCKV | ## 10. List of Projects to be implemented by funding from other sources (other than KVK fund): | Sl.
No. | Name of the project | Fund expected (Rs.) | |------------|---------------------------------|---------------------| | 1. | DAESI | 16.00 | | 2. | ATMA funded Short term Research | 4.50 | #### 11. No. of success stories proposed to be developed with their tentative titles: - 1) Income generation through Mushroom production - 2) Use of Waste decomposer as organic inputs #### 12. Scientific Advisory Committee: | Date of SAC meeting held during 2021 | Proposed date during 2022 | |--------------------------------------|---------------------------| | 06.03.21 | 1st week of March | #### 13. Soil and water testing: | | No. of Samples | No. of Farmers | | | | | | | | No of | No. of | | |--------------|----------------|----------------|---|----|---|-------|---|-------|---|-------|----------|-------------| | Details | | SC | | ST | | Other | | Total | | | No. of | SHC | | | | M | F | M | F | M | F | M | F | T | Villages | distributed | | Soil Samples | 200 | 100 | 7 | 7 | 0 | 84 | 2 | 191 | 9 | 200 | 20 | 200 | | Water | 20 | 12 | 0 | 0 | 0 | 8 | 0 | 20 | 0 | 20 | 5 | | | Samples | 20 | 12 | U | U | U | 0 | U | 20 | U | 20 | 3 | - | | Other | | | | | | | | | | | | | | (Please | - | - | - | - | - | - | - | - | - | - | - | - | | specify) | | | | | | | | | | | | | | Total | 220 | 162 | 7 | 7 | 0 | 92 | 2 | 261 | 9 | 270 | 25 | 250 | #### 14. Fund requirement and expenditure (Rs.)*: | Heads | Expenditure (last year) (Rs.) up to 31.12.2021 | Expected fund
requirement
(Rs.) for F.Y. 2022 | |------------------|--|---| | Pay & allowances | 142.69346 | 230.00 | | TA | - | 1.20 | | HRD | - | 0.30 | | Contingency | 3.91260 | 27.00 | | Non-recurring | - | 8.10 | | Total | 146.60606 | 266.60 | ^{*} Any additional requirement may be suitably justified. # 15. Every KVK should bring a brief write-up supported by quality photographs about the technology having wide acceptability among the farming community of the district with factual data: | Technology | Short details of the technology | Horizontal spread | |---|--|--| | Protected cultivation technology | Use of shadenet, naturally ventilated polyhouse and low cost structures to produce high quality flowers (Gerbera, Orchid), vegetables (Colored capsicum, off season leafy vegetable) | 243 units of protected structures covering nearly 1,90,000 sq.m. area. | | Adoption of banana
bunch cover in G- 9
variety | 50 micron white non-oven polypropylene cover of 80 cm breath and 120 cm length, both side open cover for G-9 banana | More than 127 ha of land | | Cultivation of
nematode resistant
variety of tuberose-
prajjal | Tuberose variety Prajjal released from IIHR, having good nematode resistant character with good yield both as loose or stick harvest. | More than 1000 ha of land | | Fruit fly management
in fruit crops- like
Mango, Guava and
ber and vegetables
like cucurbits. | Use of Methyl Euzinol trap for fruit crops and cuelure trap for vegetables crops. | More than 135 ha of land | Sr. Scientist & Head Nadia KVK, BCKV